cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A258409 Greatest common divisor of all (d-1)'s, where the d's are the positive divisors of n.

Original entry on oeis.org

1, 2, 1, 4, 1, 6, 1, 2, 1, 10, 1, 12, 1, 2, 1, 16, 1, 18, 1, 2, 1, 22, 1, 4, 1, 2, 1, 28, 1, 30, 1, 2, 1, 2, 1, 36, 1, 2, 1, 40, 1, 42, 1, 2, 1, 46, 1, 6, 1, 2, 1, 52, 1, 2, 1, 2, 1, 58, 1, 60, 1, 2, 1, 4, 1, 66, 1, 2, 1, 70, 1, 72, 1, 2, 1, 2, 1, 78, 1
Offset: 2

Views

Author

Ivan Neretin, May 29 2015

Keywords

Comments

a(n) = 1 for even n; a(p) = p-1 for prime p.
a(n) is even for odd n (since all divisors of n are odd).
It appears that a(n) = A052409(A005179(n)), i.e., it is the largest integer power of the smallest number with exactly n divisors. - Michel Marcus, Nov 10 2015
Conjecture: GCD of all (p-1) for prime p|n. - Thomas Ordowski, Sep 14 2016
Conjecture is true, because the set of numbers == 1 (mod g) is closed under multiplication. - Robert Israel, Sep 14 2016
Conjecture: a(n) = A289508(A328023(n)) = GCD of the differences between consecutive divisors of n. See A328163 and A328164. - Gus Wiseman, Oct 16 2019

Examples

			65 has divisors 1, 5, 13, and 65, hence a(65) = gcd(1-1,5-1,13-1,65-1) = gcd(0,4,12,64) = 4.
		

Crossrefs

Cf. A084190 (similar but with LCM).
Looking at prime indices instead of divisors gives A328167.
Partitions whose parts minus 1 are relatively prime are A328170.

Programs

  • Haskell
    a258409 n = foldl1 gcd $ map (subtract 1) $ tail $ a027750_row' n
    -- Reinhard Zumkeller, Jun 25 2015
  • Maple
    f:= n -> igcd(op(map(`-`,numtheory:-factorset(n),-1))):
    map(f, [$2..100]); # Robert Israel, Sep 14 2016
  • Mathematica
    Table[GCD @@ (Divisors[n] - 1), {n, 2, 100}]
  • PARI
    a(n) = my(g=0); fordiv(n, d, g = gcd(g, d-1)); g; \\ Michel Marcus, May 29 2015
    
  • PARI
    a(n) = gcd(apply(x->x-1, divisors(n))); \\ Michel Marcus, Nov 10 2015
    
  • PARI
    a(n)=if(n%2==0, return(1)); if(n%3==0, return(2)); if(n%5==0 && n%4 != 1, return(2)); gcd(apply(p->p-1, factor(n)[,1])) \\ Charles R Greathouse IV, Sep 19 2016