cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A258429 Primes p such that p - 1 = (tau(p - 1) - 1)^k for some k >= 0, where tau(n) is the number of divisors of n (A000005).

Original entry on oeis.org

2, 5, 17, 65537
Offset: 1

Views

Author

Jaroslav Krizek, May 29 2015

Keywords

Comments

Conjecture: the sequence is finite.
Corresponding values of numbers k: 0, 2, 2, 4, ...
A Fermat prime from A019434 of the form F(n) = 2^(2^n) + 1 is a term if k = 2^n * log(2) / log(2^n) is an integer.

Examples

			65537 (prime) is in the sequence because 65537 - 1 = (tau(65536) - 1)^4 = 16^4.
		

Crossrefs

Programs

  • Magma
    [2] cat [n+1: n in [A219338(n)] | IsPrime(n+1)];
    
  • Magma
    Set(Sort([n: n in[1..1000000], k in [0..100] | IsPrime(n) and (n-1) eq (NumberOfDivisors(n-1) - 1)^k]));
    
  • PARI
    listp(nn) = {print1(p=2, ", "); forprime(p=5, nn, expo = valuation(x=(p-1), y=(numdiv(p-1)-1)); if (x == y^expo, print1(p, ", ")););} \\ Michel Marcus, Jun 04 2015