A281312
Numbers n such that sigma(4*(n-1)) is prime.
Original entry on oeis.org
2, 5, 17, 1025, 16385, 65537, 268435457, 288230376151711745, 77371252455336267181195265, 20282409603651670423947251286017, 21267647932558653966460912964485513217
Offset: 1
-
[n: n in [2..100000] | IsPrime(SumOfDivisors(4*(n-1)))]
-
isok(n) = isprime(sigma(4*(n-1))); \\ Michel Marcus, Jan 21 2017
A283107
Numbers k such that tau(4*(k - 1)) is prime.
Original entry on oeis.org
2, 5, 17, 257, 1025, 16385, 65537, 1048577, 67108865, 268435457, 17179869185, 274877906945, 1099511627777, 17592186044417, 1125899906842625, 72057594037927937, 288230376151711745
Offset: 1
-
[n: n in [2..1100000] | IsPrime(NumberOfDivisors(4*(n-1)))];
-
Select[Range[2, 10^7], PrimeQ@ DivisorSigma[0, 4 (# - 1)] &] (* Michael De Vlieger, Feb 28 2017 *)
-
is(n)=isprime(numdiv(4*n-4)) \\ Charles R Greathouse IV, Feb 28 2017
-
list(lim)=my(v=List()); forprime(p=3,logint(lim\1*8-8,2), listput(v,2^(p-3)+1)); Vec(v) \\ Charles R Greathouse IV, Mar 01 2017
A277208
Numbers m such that m-1 = (tau(m-1)-1)^k for some k>=0, where tau(m) is the number of divisors of m (A000005).
Original entry on oeis.org
2, 5, 17, 28, 3126, 3376, 65537, 823544, 3748097, 52521876
Offset: 1
3376 is in the sequence because 3375 = (tau(3375)-1)^3 = 15^3.
-
Set(Sort([n: n in[2..1000000], k in [0..20] | (n-1) eq (NumberOfDivisors(n-1)-1)^k]));
-
isok(n) = {if (n==2, return(1)); my(dd = numdiv(n-1) - 1); if (dd > 1, my(k = 1); while(dd^k < n-1, k++); dd^k == n-1;);} \\ Michel Marcus, Oct 11 2016
Showing 1-3 of 3 results.
Comments