cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-3 of 3 results.

A281312 Numbers n such that sigma(4*(n-1)) is prime.

Original entry on oeis.org

2, 5, 17, 1025, 16385, 65537, 268435457, 288230376151711745, 77371252455336267181195265, 20282409603651670423947251286017, 21267647932558653966460912964485513217
Offset: 1

Views

Author

Jaroslav Krizek, Jan 19 2017

Keywords

Comments

Conjecture: the next terms are: 288230376151711745, 77371252455336267181195265, 20282409603651670423947251286017, 21267647932558653966460912964485513217.
Conjecture: prime terms are in A258429: 2, 5, 17, 65537.
Conjecture: corresponding primes p are Mersenne primes (A000668) > 3.
Sigma is multiplicative, and sigma(m) > 1 for all m > 1, so sigma(m) can be prime only if m is a prime power. Hence all n in this sequence are of the form 2^m + 1 for some m >= 0. This proves the above conjectures and leads to an explicit formula (q.v.) in terms of the Mersenne numbers. - Charles R Greathouse IV, Mar 01 2017

Crossrefs

Programs

  • Magma
    [n: n in [2..100000] | IsPrime(SumOfDivisors(4*(n-1)))]
    
  • PARI
    isok(n) = isprime(sigma(4*(n-1))); \\ Michel Marcus, Jan 21 2017

Formula

a(n) = 2^(A000043(n+1)-3) + 1. - Charles R Greathouse IV, Mar 01 2017

Extensions

a(7) = 268435457 confirmed by Jon E. Schoenfield, Jan 20 2017
a(8)-a(11) from Charles R Greathouse IV, Mar 01 2017

A283107 Numbers k such that tau(4*(k - 1)) is prime.

Original entry on oeis.org

2, 5, 17, 257, 1025, 16385, 65537, 1048577, 67108865, 268435457, 17179869185, 274877906945, 1099511627777, 17592186044417, 1125899906842625, 72057594037927937, 288230376151711745
Offset: 1

Views

Author

Juri-Stepan Gerasimov, Feb 28 2017

Keywords

Comments

Conjecturally, a supersequence of A281312.
The conjecture is true: the formula at A281312 implies that the number of divisors of 4*A281312(n) - 4 is A000043(n+1). - Charles R Greathouse IV, Mar 01 2017

Crossrefs

Supersequence of A281312.

Programs

  • Magma
    [n: n in [2..1100000] | IsPrime(NumberOfDivisors(4*(n-1)))];
    
  • Mathematica
    Select[Range[2, 10^7], PrimeQ@ DivisorSigma[0, 4 (# - 1)] &] (* Michael De Vlieger, Feb 28 2017 *)
  • PARI
    is(n)=isprime(numdiv(4*n-4)) \\ Charles R Greathouse IV, Feb 28 2017
    
  • PARI
    list(lim)=my(v=List()); forprime(p=3,logint(lim\1*8-8,2), listput(v,2^(p-3)+1)); Vec(v) \\ Charles R Greathouse IV, Mar 01 2017

Extensions

a(4), a(9)-a(17) from Charles R Greathouse IV, Mar 01 2017

A277208 Numbers m such that m-1 = (tau(m-1)-1)^k for some k>=0, where tau(m) is the number of divisors of m (A000005).

Original entry on oeis.org

2, 5, 17, 28, 3126, 3376, 65537, 823544, 3748097, 52521876
Offset: 1

Views

Author

Jaroslav Krizek, Oct 10 2016

Keywords

Comments

Corresponding pairs of numbers (tau(m-1)-1, k): (0, 0); (2, 2); (4, 2); (3, 3); (5, 5); (15, 3); (16, 4); (7, 7); ...
Numbers from A125137 (numbers of the form p^p + 1 where p = prime) are terms: 285311670612, 302875106592254, 827240261886336764178, 1978419655660313589123980, 20880467999847912034355032910568, ...
Prime terms are in A258429: 2, 5, 17, 65537, ...
A Fermat prime from A019434 of the form F(n) = 2^(2^n) + 1 is a term if k = 2^n * log(2) / log(2^n) is an integer.
a(11), if it exists, is > 10^10. - Lars Blomberg, Nov 14 2016

Examples

			3376 is in the sequence because 3375 = (tau(3375)-1)^3 = 15^3.
		

Crossrefs

Programs

  • Magma
    Set(Sort([n: n in[2..1000000], k in [0..20] |  (n-1) eq (NumberOfDivisors(n-1)-1)^k]));
    
  • PARI
    isok(n) = {if (n==2, return(1)); my(dd = numdiv(n-1) - 1); if (dd > 1, my(k = 1); while(dd^k < n-1, k++); dd^k == n-1;);} \\ Michel Marcus, Oct 11 2016

Extensions

a(9)-a(10) from Michel Marcus, Oct 11 2016
Showing 1-3 of 3 results.