cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A258439 Powers of 3 alternating with powers of 2.

Original entry on oeis.org

1, 1, 3, 2, 9, 4, 27, 8, 81, 16, 243, 32, 729, 64, 2187, 128, 6561, 256, 19683, 512, 59049, 1024, 177147, 2048, 531441, 4096, 1594323, 8192, 4782969, 16384, 14348907, 32768, 43046721, 65536, 129140163, 131072, 387420489, 262144, 1162261467
Offset: 0

Views

Author

Luce ETIENNE, May 30 2015

Keywords

Comments

a(n)*A098293(n) = A000400(floor(n/2)).

Crossrefs

Programs

  • GAP
    Flat(List([0..20],n->[3^n,2^n])); # Muniru A Asiru, Jul 16 2018
    
  • Magma
    &cat[[3^n, 2^n]: n in [0..35]]; // Vincenzo Librandi, Jul 17 2018
  • Maple
    seq(op([3^n,2^n]),n=0..20); # Muniru A Asiru, Jul 16 2018
  • Mathematica
    Flatten[Table[{3^n, 2^n}, {n, 0, 25}]] (* Vincenzo Librandi, Jul 17 2018 *)
  • PARI
    Vec(-(3*x^3+2*x^2-x-1)/((2*x^2-1)*(3*x^2-1)) + O(x^100)) \\ Colin Barker, May 30 2015
    

Formula

a(n) = ((5+(-1)^n)/2)^((2*n-1+(-1)^n)/4).
a(n) = 5*a(n-2)-6*a(n-4). - Colin Barker, May 30 2015
G.f.: -(3*x^3+2*x^2-x-1) / ((2*x^2-1)*(3*x^2-1)). - Colin Barker, May 30 2015