A258498 Number of words of length 2n such that the index set of occurring letters is {1, 2, ..., k}, all letters are introduced in ascending order, and the words can be built by repeatedly inserting doublets into the initially empty word.
1, 1, 3, 15, 105, 933, 9988, 124449, 1761287, 27813479, 483482018, 9153385959, 187129080977, 4102129113670, 95861136747795, 2376234441556411, 62216635372018209, 1714347701138957189, 49553280367466054768, 1498300016807379304877, 47270249397381096576643
Offset: 0
Keywords
Examples
a(3) = 15: aaaaaa, aaaabb, aaabba, aabaab, aabbaa, aabbbb, abaaba, abbaaa, abbabb, abbbba, aabbcc, aabccb, abbacc, abbcca, abccba.
Links
- Alois P. Heinz, Table of n, a(n) for n = 0..447
Programs
-
Maple
A:= proc(n, k) option remember; `if`(n=0, 1, k/n* add(binomial(2*n, j)*(n-j)*(k-1)^j, j=0..n-1)) end: T:= (n, k)-> add((-1)^i*A(n, k-i)/(i!*(k-i)!), i=0..k): a:= n-> add(T(n, k), k=0..n): seq(a(n), n=0..25);
-
Mathematica
A[n_, k_] := A[n, k] = If[n == 0, 1, k/n*Sum[Binomial[2*n, j]*(n - j)*If[j == 0, 1, (k - 1)^j], {j, 0, n - 1}]]; T[n_, k_] := Sum[(-1)^i*A[n, k - i]/(i!*(k - i)!), {i, 0, k}]; a[n_] := Sum[T[n, k], {k, 0, n}]; a /@ Range[0, 25] (* Jean-François Alcover, Jan 01 2021, after Alois P. Heinz *)
Formula
a(n) = Sum_{k=0..n} A256117(n,k).
a(n) ~ Bell(n-1)*Catalan(n) ~ n^n * exp(n/LambertW(n)-1-n) * 4^n / (sqrt(Pi) * sqrt(1+LambertW(n)) * LambertW(n)^(n-1) * n^(5/2)). - Vaclav Kotesovec, Jun 02 2015