cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-5 of 5 results.

A258600 a(n) is the index m such that A036966(m) = prime(n)^3.

Original entry on oeis.org

2, 4, 8, 13, 23, 29, 39, 45, 57, 75, 81, 99, 110, 117, 130, 149, 169, 176, 197, 209, 212, 236, 250, 270, 295, 309, 317, 328, 337, 354, 399, 414, 436, 445, 477, 483, 506, 529, 541, 563, 585, 591, 631, 635, 654, 657, 697, 747, 758, 765, 781, 803, 809, 845, 864
Offset: 1

Views

Author

Reinhard Zumkeller, Jun 06 2015

Keywords

Examples

			.   n |  p |  a(n) | A036966(a(n)) = A030078(n) = p^3
. ----+----+-------+---------------------------------
.   1 |  2 |     2 |             8
.   2 |  3 |     4 |            27
.   3 |  5 |     8 |           125
.   4 |  7 |    13 |           343
.   5 | 11 |    23 |          1331
.   6 | 13 |    29 |          2197
.   7 | 17 |    39 |          4913
.   8 | 19 |    45 |          6859
.   9 | 23 |    57 |         12167
.  10 | 29 |    75 |         24389
.  11 | 31 |    81 |         29791
.  12 | 37 |    99 |         50653
.  13 | 41 |   110 |         68921
.  14 | 43 |   117 |         79507
.  15 | 47 |   130 |        103823
.  16 | 53 |   149 |        148877
.  17 | 59 |   169 |        205379
.  18 | 61 |   176 |        226981
.  19 | 67 |   197 |        300763
.  20 | 71 |   209 |        357911
.  21 | 73 |   212 |        389017
.  22 | 79 |   236 |        493039
.  23 | 83 |   250 |        571787
.  24 | 89 |   270 |        704969
.  25 | 97 |   295 |        912673  .
		

Crossrefs

Programs

  • Haskell
    import Data.List (elemIndex); import Data.Maybe (fromJust)
    a258600 = (+ 1) . fromJust . (`elemIndex` a258568_list) . a000040
    
  • Mathematica
    With[{m = 60}, c = Select[Range[Prime[m]^3], Min[FactorInteger[#][[;; , 2]]] > 2 &]; 1 + Flatten[FirstPosition[c, #] & /@ (Prime[Range[m]]^3)]] (* Amiram Eldar, Feb 07 2023 *)
  • Python
    from math import gcd
    from sympy import prime, integer_nthroot, factorint
    def A258600(n):
        c, m = 0, prime(n)**3
        for w in range(1,integer_nthroot(m,5)[0]+1):
            if all(d<=1 for d in factorint(w).values()):
                for y in range(1,integer_nthroot(z:=m//w**5,4)[0]+1):
                    if gcd(w,y)==1 and all(d<=1 for d in factorint(y).values()):
                        c += integer_nthroot(z//y**4,3)[0]
        return c # Chai Wah Wu, Sep 10 2024

Formula

A036966(a(n)) = A030078(n) = prime(n)^3.
A036966(m) mod prime(n) > 0 for m < a(n).
Also smallest number m such that A258568(m) = prime(n):
A258568(a(n)) = A000040(n) and A258568(m) != A000040(n) for m < a(n).

Extensions

a(11)-a(55) and example corrected by Amiram Eldar, Feb 07 2023

A258567 a(1) = 1; thereafter a(n) = smallest prime factor of the powerful number A001694(n).

Original entry on oeis.org

1, 2, 2, 3, 2, 5, 3, 2, 2, 7, 2, 2, 3, 2, 2, 11, 5, 2, 2, 13, 2, 2, 2, 3, 3, 2, 2, 17, 2, 7, 19, 2, 2, 2, 3, 2, 2, 2, 23, 2, 5, 2, 3, 2, 3, 2, 2, 29, 2, 2, 31, 2, 2, 2, 2, 3, 3, 2, 2, 5, 2, 3, 11, 2, 37, 2, 2, 3, 2, 2, 41, 2, 2, 2, 43, 2, 2, 2, 3, 2, 2, 3
Offset: 1

Views

Author

Reinhard Zumkeller, Jun 06 2015

Keywords

Crossrefs

Programs

  • Haskell
    a258567 = a020639 . a001694
    
  • Mathematica
    Table[If[Min[(f = FactorInteger[n])[[;; , 2]]] > 1 || n == 1, f[[1, 1]], Nothing], {n, 1, 3000}] (* Amiram Eldar, Jan 30 2023 *)
  • Python
    from math import isqrt
    from sympy import mobius, integer_nthroot, primefactors
    def A258567(n):
        def squarefreepi(n):
            return int(sum(mobius(k)*(n//k**2) for k in range(1, isqrt(n)+1)))
        def bisection(f, kmin=0, kmax=1):
            while f(kmax) > kmax: kmax <<= 1
            while kmax-kmin > 1:
                kmid = kmax+kmin>>1
                if f(kmid) <= kmid:
                    kmax = kmid
                else:
                    kmin = kmid
            return kmax
        def f(x):
            c, l = n+x, 0
            j = isqrt(x)
            while j>1:
                k2 = integer_nthroot(x//j**2, 3)[0]+1
                w = squarefreepi(k2-1)
                c -= j*(w-l)
                l, j = w, isqrt(x//k2**3)
            c -= squarefreepi(integer_nthroot(x, 3)[0])-l
            return c
        return min(primefactors(bisection(f,n,n)),default=1) # Chai Wah Wu, Sep 10 2024

Formula

a(n) = A020639(A001694(n)).
a(A258599(n)) = A000040(n) and a(m) != A000040(n) for m < A258599(n).

Extensions

Definition made more precise by N. J. A. Sloane, Apr 29 2024

A258569 Smallest prime factors of 4-full numbers, a(1)=1.

Original entry on oeis.org

1, 2, 2, 2, 3, 2, 3, 2, 2, 5, 3, 2, 2, 2, 3, 7, 2, 5, 2, 2, 2, 3, 2, 2, 2, 2, 2, 11, 2, 5, 2, 7, 3, 2, 2, 2, 13, 2, 2, 2, 2, 2, 2, 2, 2, 3, 3, 2, 2, 2, 2, 5, 2, 2, 17, 2, 2, 2, 7, 2, 19, 2, 2, 3, 2, 2, 11, 2, 3, 2, 3, 2, 2, 2, 2, 2, 3, 2, 2, 23, 2, 2, 2, 2
Offset: 1

Views

Author

Reinhard Zumkeller, Jun 06 2015

Keywords

Crossrefs

Programs

  • Haskell
    a258569 = a020639 . a036967
    
  • Mathematica
    Reap[Sow[1]; Do[f = FactorInteger[k]; If[Min[f[[All, 2]]] >= 4, Sow[f[[1, 1]]]], {k, 2, 10^6}]][[2, 1]] (* Jean-François Alcover, Sep 29 2020 *)
  • PARI
    lista(kmax) = {my(f); print1(1, ", "); for(k = 2, kmax, f = factor(k); if(vecmin(f[, 2]) > 3, print1(f[1, 1], ", ")));} \\ Amiram Eldar, Sep 09 2024

Formula

a(n) = A020639(A036967(n));
a(A258601(n)) = A000040(n) and a(m) != A000040(n) for m < A258601(n).

A258570 Smallest prime factors of 5-full numbers, a(1)=1.

Original entry on oeis.org

1, 2, 2, 2, 3, 2, 2, 3, 2, 2, 3, 5, 2, 3, 2, 2, 2, 5, 2, 7, 3, 2, 2, 2, 2, 3, 2, 2, 2, 5, 2, 2, 7, 2, 2, 2, 11, 3, 2, 2, 2, 2, 2, 2, 13, 2, 5, 2, 2, 2, 2, 2, 3, 2, 2, 2, 2, 3, 2, 7, 2, 2, 2, 2, 2, 2, 2, 17, 2, 3, 2, 2, 11, 2, 5, 2, 2, 2, 2, 2, 3, 19, 2, 2, 2
Offset: 1

Views

Author

Reinhard Zumkeller, Jun 06 2015

Keywords

Crossrefs

Programs

  • Haskell
    a258570 = a020639 . a069492
    
  • PARI
    lista(kmax) = {my(f); print1(1, ", "); for(k = 2, kmax, f = factor(k); if(vecmin(f[, 2]) > 4, print1(f[1, 1], ", "))); } \\ Amiram Eldar, Sep 12 2024

Formula

a(n) = A020639(A069492(n)).
a(A258602(n)) = A000040(n) and a(m) != A000040(n) for m < A258602(n).

A258571 Smallest prime factors of 6-full numbers, a(1)=1.

Original entry on oeis.org

1, 2, 2, 2, 2, 3, 2, 2, 3, 2, 3, 2, 5, 2, 3, 2, 2, 3, 2, 5, 2, 7, 2, 2, 3, 2, 2, 2, 2, 5, 2, 2, 3, 2, 2, 7, 2, 2, 2, 2, 2, 2, 3, 2, 11, 5, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 3, 13, 2, 2, 7, 2, 2, 2, 2, 2, 2, 2, 5, 2, 2, 2, 3, 2, 2, 3, 2, 2, 2, 2, 2, 11, 2, 2, 2
Offset: 1

Views

Author

Reinhard Zumkeller, Jun 06 2015

Keywords

Crossrefs

Programs

  • Haskell
    a258571 = a020639 . a069493
    
  • PARI
    lista(kmax) = {my(f); print1(1, ", "); for(k = 2, kmax, f = factor(k); if(vecmin(f[, 2]) > 5, print1(f[1, 1], ", "))); } \\ Amiram Eldar, Sep 12 2024

Formula

a(n) = A020639(A069493(n)).
a(A258603(n)) = A000040(n) and a(m) != A000040(n) for m < A258603(n).
Showing 1-5 of 5 results.