cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-5 of 5 results.

A258603 a(n) is the index m such that A069493(m) = prime(n)^6.

Original entry on oeis.org

2, 6, 13, 22, 45, 58, 87, 102, 135, 181, 199, 252, 287, 306, 342, 401, 461, 479, 536, 583, 602, 665, 712, 776, 860, 911, 932, 975, 997, 1051, 1212, 1258, 1331, 1356, 1479, 1502, 1580, 1651, 1705, 1784, 1856, 1879, 2013, 2037, 2093, 2113, 2272, 2438, 2484, 2510
Offset: 1

Views

Author

Reinhard Zumkeller, Jun 06 2015

Keywords

Comments

A069493(a(n)) = A030516(n) = prime(n)^6;
A069493(m) mod prime(n) > 0 for m < a(n);
also smallest number m such that A258571(m) = prime(n):
A258571(a(n)) = A000040(n) and A258571(m) != A000040(n) for m < a(n).

Examples

			.   n |  p |  a(n) | A069493(a(n)) = A030516(n) = p^6
. ----+----+-------+---------------------------------
.   1 |  2 |     2 |            64
.   2 |  3 |     6 |           729
.   3 |  5 |    13 |         15625
.   4 |  7 |    22 |        117649
.   5 | 11 |    45 |       1771561
.   6 | 13 |    58 |       4826809
.   7 | 17 |    87 |      24137569
.   8 | 19 |   102 |      47045881
.   9 | 23 |   135 |     148035889
.  10 | 29 |   181 |     594823321
.  11 | 31 |   199 |     887503681
.  12 | 37 |   252 |    2565726409
.  13 | 41 |   287 |    4750104241
.  14 | 43 |   306 |    6321363049
.  15 | 47 |   342 |   10779215329
.  16 | 53 |   401 |   22164361129
.  17 | 59 |   461 |   42180533641
.  18 | 61 |   479 |   51520374361
.  19 | 67 |   536 |   90458382169
.  20 | 71 |   583 |  128100283921
.  21 | 73 |   602 |  151334226289
.  22 | 79 |   665 |  243087455521
.  23 | 83 |   712 |  326940373369
.  24 | 89 |   776 |  496981290961
.  25 | 97 |   860 |  832972004929  .
		

Crossrefs

Programs

  • Haskell
    import Data.List (elemIndex); import Data.Maybe (fromJust)
    a258603 = (+ 1) . fromJust . (`elemIndex` a258571_list) . a000040
    
  • PARI
    \\ Gen(limit,k) defined in A036967.
    a(n)=#Gen(prime(n)^6,6) \\ Andrew Howroyd, Sep 10 2024
  • Python
    from math import gcd
    from sympy import prime, integer_nthroot, factorint
    def A258603(n):
        c, m = 0, prime(n)**6
        for y1 in range(1,integer_nthroot(m,11)[0]+1):
            if all(d<=1 for d in factorint(y1).values()):
                for y2 in range(1,integer_nthroot(z2:=m//y1**11,10)[0]+1):
                    if gcd(y2,y1)==1 and all(d<=1 for d in factorint(y2).values()):
                        for y3 in range(1,integer_nthroot(z3:=z2//y2**10,9)[0]+1):
                            if all(gcd(y3,x)==1 for x in (y1,y2)) and all(d<=1 for d in factorint(y3).values()):
                                for y4 in range(1,integer_nthroot(z4:=z3//y3**9,8)[0]+1):
                                    if all(gcd(y4,x)==1 for x in (y1,y2,y3)) and all(d<=1 for d in factorint(y4).values()):
                                        for y5 in range(1,integer_nthroot(z5:=z4//y4**8,7)[0]+1):
                                            if all(gcd(y5,x)==1 for x in (y1,y2,y3,y4)) and all(d<=1 for d in factorint(y5).values()):
                                                c += integer_nthroot(z5//y5**7,6)[0]
        return c # Chai Wah Wu, Sep 10 2024
    

Extensions

a(11) onwards corrected by Chai Wah Wu and Andrew Howroyd, Sep 10 2024

A258567 a(1) = 1; thereafter a(n) = smallest prime factor of the powerful number A001694(n).

Original entry on oeis.org

1, 2, 2, 3, 2, 5, 3, 2, 2, 7, 2, 2, 3, 2, 2, 11, 5, 2, 2, 13, 2, 2, 2, 3, 3, 2, 2, 17, 2, 7, 19, 2, 2, 2, 3, 2, 2, 2, 23, 2, 5, 2, 3, 2, 3, 2, 2, 29, 2, 2, 31, 2, 2, 2, 2, 3, 3, 2, 2, 5, 2, 3, 11, 2, 37, 2, 2, 3, 2, 2, 41, 2, 2, 2, 43, 2, 2, 2, 3, 2, 2, 3
Offset: 1

Views

Author

Reinhard Zumkeller, Jun 06 2015

Keywords

Crossrefs

Programs

  • Haskell
    a258567 = a020639 . a001694
    
  • Mathematica
    Table[If[Min[(f = FactorInteger[n])[[;; , 2]]] > 1 || n == 1, f[[1, 1]], Nothing], {n, 1, 3000}] (* Amiram Eldar, Jan 30 2023 *)
  • Python
    from math import isqrt
    from sympy import mobius, integer_nthroot, primefactors
    def A258567(n):
        def squarefreepi(n):
            return int(sum(mobius(k)*(n//k**2) for k in range(1, isqrt(n)+1)))
        def bisection(f, kmin=0, kmax=1):
            while f(kmax) > kmax: kmax <<= 1
            while kmax-kmin > 1:
                kmid = kmax+kmin>>1
                if f(kmid) <= kmid:
                    kmax = kmid
                else:
                    kmin = kmid
            return kmax
        def f(x):
            c, l = n+x, 0
            j = isqrt(x)
            while j>1:
                k2 = integer_nthroot(x//j**2, 3)[0]+1
                w = squarefreepi(k2-1)
                c -= j*(w-l)
                l, j = w, isqrt(x//k2**3)
            c -= squarefreepi(integer_nthroot(x, 3)[0])-l
            return c
        return min(primefactors(bisection(f,n,n)),default=1) # Chai Wah Wu, Sep 10 2024

Formula

a(n) = A020639(A001694(n)).
a(A258599(n)) = A000040(n) and a(m) != A000040(n) for m < A258599(n).

Extensions

Definition made more precise by N. J. A. Sloane, Apr 29 2024

A258568 Smallest prime factors of 3-full numbers.

Original entry on oeis.org

1, 2, 2, 3, 2, 2, 3, 5, 2, 2, 3, 2, 7, 2, 2, 5, 2, 3, 2, 2, 2, 2, 11, 2, 2, 2, 2, 3, 13, 7, 2, 2, 5, 3, 2, 2, 2, 2, 17, 2, 2, 2, 2, 3, 19, 2, 2, 2, 2, 3, 2, 3, 2, 2, 2, 2, 23, 2, 11, 2, 5, 2, 2, 7, 3, 2, 2, 2, 3, 2, 2, 2, 2, 2, 29, 2, 2, 2, 3, 13, 31, 3, 2, 2
Offset: 1

Views

Author

Reinhard Zumkeller, Jun 06 2015

Keywords

Crossrefs

Programs

  • Haskell
    a258568 = a020639 . a036966
  • Mathematica
    Table[If[Min[(f = FactorInteger[n])[[;; , 2]]] > 2 || n == 1, f[[1, 1]], Nothing], {n, 1, 30000}] (* Amiram Eldar, Feb 07 2023 *)

Formula

a(n) = A020639(A036966(n)).
a(A258600(n)) = A000040(n) and a(m) != A000040(n) for m < A258600(n).

Extensions

Missing term a(78) inserted by Amiram Eldar, Feb 07 2023

A258569 Smallest prime factors of 4-full numbers, a(1)=1.

Original entry on oeis.org

1, 2, 2, 2, 3, 2, 3, 2, 2, 5, 3, 2, 2, 2, 3, 7, 2, 5, 2, 2, 2, 3, 2, 2, 2, 2, 2, 11, 2, 5, 2, 7, 3, 2, 2, 2, 13, 2, 2, 2, 2, 2, 2, 2, 2, 3, 3, 2, 2, 2, 2, 5, 2, 2, 17, 2, 2, 2, 7, 2, 19, 2, 2, 3, 2, 2, 11, 2, 3, 2, 3, 2, 2, 2, 2, 2, 3, 2, 2, 23, 2, 2, 2, 2
Offset: 1

Views

Author

Reinhard Zumkeller, Jun 06 2015

Keywords

Crossrefs

Programs

  • Haskell
    a258569 = a020639 . a036967
    
  • Mathematica
    Reap[Sow[1]; Do[f = FactorInteger[k]; If[Min[f[[All, 2]]] >= 4, Sow[f[[1, 1]]]], {k, 2, 10^6}]][[2, 1]] (* Jean-François Alcover, Sep 29 2020 *)
  • PARI
    lista(kmax) = {my(f); print1(1, ", "); for(k = 2, kmax, f = factor(k); if(vecmin(f[, 2]) > 3, print1(f[1, 1], ", ")));} \\ Amiram Eldar, Sep 09 2024

Formula

a(n) = A020639(A036967(n));
a(A258601(n)) = A000040(n) and a(m) != A000040(n) for m < A258601(n).

A258570 Smallest prime factors of 5-full numbers, a(1)=1.

Original entry on oeis.org

1, 2, 2, 2, 3, 2, 2, 3, 2, 2, 3, 5, 2, 3, 2, 2, 2, 5, 2, 7, 3, 2, 2, 2, 2, 3, 2, 2, 2, 5, 2, 2, 7, 2, 2, 2, 11, 3, 2, 2, 2, 2, 2, 2, 13, 2, 5, 2, 2, 2, 2, 2, 3, 2, 2, 2, 2, 3, 2, 7, 2, 2, 2, 2, 2, 2, 2, 17, 2, 3, 2, 2, 11, 2, 5, 2, 2, 2, 2, 2, 3, 19, 2, 2, 2
Offset: 1

Views

Author

Reinhard Zumkeller, Jun 06 2015

Keywords

Crossrefs

Programs

  • Haskell
    a258570 = a020639 . a069492
    
  • PARI
    lista(kmax) = {my(f); print1(1, ", "); for(k = 2, kmax, f = factor(k); if(vecmin(f[, 2]) > 4, print1(f[1, 1], ", "))); } \\ Amiram Eldar, Sep 12 2024

Formula

a(n) = A020639(A069492(n)).
a(A258602(n)) = A000040(n) and a(m) != A000040(n) for m < A258602(n).
Showing 1-5 of 5 results.