cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-8 of 8 results.

A030078 Cubes of primes.

Original entry on oeis.org

8, 27, 125, 343, 1331, 2197, 4913, 6859, 12167, 24389, 29791, 50653, 68921, 79507, 103823, 148877, 205379, 226981, 300763, 357911, 389017, 493039, 571787, 704969, 912673, 1030301, 1092727, 1225043, 1295029, 1442897, 2048383, 2248091, 2571353, 2685619, 3307949
Offset: 1

Views

Author

Keywords

Comments

Numbers with exactly three factorizations: A001055(a(n)) = 3 (e.g., a(4) = 1*343 = 7*49 = 7*7*7). - Reinhard Zumkeller, Dec 29 2001
Intersection of A014612 and A000578. Intersection of A014612 and A030513. - Wesley Ivan Hurt, Sep 10 2013
Let r(n) = (a(n)-1)/(a(n)+1) if a(n) mod 4 = 1, (a(n)+1)/(a(n)-1) otherwise; then Product_{n>=1} r(n) = (9/7) * (28/26) * (124/126) * (344/342) * (1332/1330) * ... = 48/35. - Dimitris Valianatos, Mar 06 2020
There exist 5 groups of order p^3, when p prime, so this is a subsequence of A054397. Three of them are abelian: C_p^3, C_p^2 X C_p and C_p X C_p X C_p = (C_p)^3. For 8 = 2^3, the 2 nonabelian groups are D_8 and Q_8; for odd prime p, the 2 nonabelian groups are (C_p x C_p) : C_p, and C_p^2 : C_p (remark, for p = 2, these two semi-direct products are isomorphic to D_8). Here C, D, Q mean Cyclic, Dihedral, Quaternion groups of the stated order; the symbols X and : mean direct and semidirect products respectively. - Bernard Schott, Dec 11 2021

Examples

			a(3) = 125; since the 3rd prime is 5, a(3) = 5^3 = 125.
		

References

  • Edmund Landau, Elementary Number Theory, translation by Jacob E. Goodman of Elementare Zahlentheorie (Vol. I_1 (1927) of Vorlesungen über Zahlentheorie), by Edmund Landau, with added exercises by Paul T. Bateman and E. E. Kohlbecker, Chelsea Publishing Co., New York, 1958, pp. 31-32.

Crossrefs

Other sequences that are k-th powers of primes are: A000040 (k=1), A001248 (k=2), this sequence (k=3), A030514 (k=4), A050997 (k=5), A030516 (k=6), A092759 (k=7), A179645 (k=8), A179665 (k=9), A030629 (k=10), A079395 (k=11), A030631 (k=12), A138031 (k=13), A030635 (k=16), A138032 (k=17), A030637 (k=18).
Cf. A060800, A131991, A000578, subsequence of A046099.
Subsequence of A007422 and of A054397.

Programs

Formula

n such that A062799(n) = 3. - Benoit Cloitre, Apr 06 2002
a(n) = A000040(n)^3. - Omar E. Pol, Jul 27 2009
A064380(a(n)) = A000010(a(n)). - Vladimir Shevelev, Apr 19 2010
A003415(a(n)) = A079705(n). - Reinhard Zumkeller, Jun 26 2011
A056595(a(n)) = 2. - Reinhard Zumkeller, Aug 15 2011
A000005(a(n)) = 4. - Wesley Ivan Hurt, Sep 10 2013
a(n) = A119959(n) * A008864(n) -1.- R. J. Mathar, Aug 13 2019
Sum_{n>=1} 1/a(n) = P(3) = 0.1747626392... (A085541). - Amiram Eldar, Jul 27 2020
From Amiram Eldar, Jan 23 2021: (Start)
Product_{n>=1} (1 + 1/a(n)) = zeta(3)/zeta(6) (A157289).
Product_{n>=1} (1 - 1/a(n)) = 1/zeta(3) (A088453). (End)

A036966 3-full (or cube-full, or cubefull) numbers: if a prime p divides n then so does p^3.

Original entry on oeis.org

1, 8, 16, 27, 32, 64, 81, 125, 128, 216, 243, 256, 343, 432, 512, 625, 648, 729, 864, 1000, 1024, 1296, 1331, 1728, 1944, 2000, 2048, 2187, 2197, 2401, 2592, 2744, 3125, 3375, 3456, 3888, 4000, 4096, 4913, 5000, 5184, 5488, 5832, 6561, 6859, 6912, 7776, 8000
Offset: 1

Views

Author

Keywords

Comments

Also called powerful_3 numbers.
For n > 1: A124010(a(n),k) > 2, k = 1..A001221(a(n)). - Reinhard Zumkeller, Dec 15 2013
a(m) mod prime(n) > 0 for m < A258600(n); a(A258600(n)) = A030078(n) = prime(n)^3. - Reinhard Zumkeller, Jun 06 2015

References

  • M. J. Halm, More Sequences, Mpossibilities 83, April 2003.
  • A. Ivic, The Riemann Zeta-Function, Wiley, NY, 1985, see p. 407.
  • E. Kraetzel, Lattice Points, Kluwer, Chap. 7, p. 276.

Crossrefs

Programs

  • Haskell
    import Data.Set (singleton, deleteFindMin, fromList, union)
    a036966 n = a036966_list !! (n-1)
    a036966_list = 1 : f (singleton z) [1, z] zs where
       f s q3s p3s'@(p3:p3s)
         | m < p3 = m : f (union (fromList $ map (* m) ps) s') q3s p3s'
         | otherwise = f (union (fromList $ map (* p3) q3s) s) (p3:q3s) p3s
         where ps = a027748_row m
               (m, s') = deleteFindMin s
       (z:zs) = a030078_list
    -- Reinhard Zumkeller, Jun 03 2015, Dec 15 2013
    
  • Maple
    isA036966 := proc(n)
        local p ;
        for p in ifactors(n)[2] do
            if op(2,p) < 3 then
                return false;
            end if;
        end do:
        return true ;
    end proc:
    A036966 := proc(n)
        option remember;
        if n = 1 then
            1 ;
        else
            for a from procname(n-1)+1 do
                if isA036966(a) then
                    return a;
                end if;
            end do:
        end if;
    end proc: # R. J. Mathar, May 01 2013
  • Mathematica
    Select[ Range[2, 8191], Min[ Table[ # [[2]], {1}] & /@ FactorInteger[ # ]] > 2 &]
    Join[{1},Select[Range[8000],Min[Transpose[FactorInteger[#]][[2]]]>2&]] (* Harvey P. Dale, Jul 17 2013 *)
  • PARI
    is(n)=n==1 || vecmin(factor(n)[,2])>2 \\ Charles R Greathouse IV, Sep 17 2015
    
  • PARI
    list(lim)=my(v=List(),t); for(a=1,sqrtnint(lim\1,5), for(b=1,sqrtnint(lim\a^5,4), t=a^5*b^4; for(c=1,sqrtnint(lim\t,3), listput(v,t*c^3)))); Set(v) \\ Charles R Greathouse IV, Nov 20 2015
    
  • PARI
    list(lim)=my(v=List(),t); forsquarefree(a=1,sqrtnint(lim\1,5), my(a5=a[1]^5); forsquarefree(b=1,sqrtnint(lim\a5,4), if(gcd(a[1],b[1])>1, next); t=a5*b[1]^4; for(c=1,sqrtnint(lim\t,3), listput(v,t*c^3)))); Set(v) \\ Charles R Greathouse IV, Jan 12 2022
    
  • Python
    from math import gcd
    from sympy import integer_nthroot, factorint
    def A036966(n):
        def f(x):
            c = n+x
            for w in range(1,integer_nthroot(x,5)[0]+1):
                if all(d<=1 for d in factorint(w).values()):
                    for y in range(1,integer_nthroot(z:=x//w**5,4)[0]+1):
                        if gcd(w,y)==1 and all(d<=1 for d in factorint(y).values()):
                            c -= integer_nthroot(z//y**4,3)[0]
            return c
        def bisection(f,kmin=0,kmax=1):
            while f(kmax) > kmax: kmax <<= 1
            while kmax-kmin > 1:
                kmid = kmax+kmin>>1
                if f(kmid) <= kmid:
                    kmax = kmid
                else:
                    kmin = kmid
            return kmax
        return bisection(f,n,n) # Chai Wah Wu, Sep 10 2024

Formula

Sum_{n>=1} 1/a(n) = Product_{p prime}(1 + 1/(p^2*(p-1))) (A065483). - Amiram Eldar, Jun 23 2020
Numbers of the form x^5*y^4*z^3. There is a unique representation with x,y squarefree and coprime. - Charles R Greathouse IV, Jan 12 2022

Extensions

More terms from Erich Friedman
Corrected by Vladeta Jovovic, Aug 17 2002

A258599 a(n) is the index m such that A001694(m) = prime(n)^2.

Original entry on oeis.org

2, 4, 6, 10, 16, 20, 28, 31, 39, 48, 51, 65, 71, 75, 84, 94, 107, 110, 120, 129, 133, 145, 152, 163, 180, 187, 191, 199, 202, 212, 238, 246, 258, 261, 282, 286, 297, 309, 319, 330, 342, 344, 366, 372, 377, 382, 407, 431, 440, 443, 450, 463, 468, 487, 498
Offset: 1

Views

Author

Reinhard Zumkeller, Jun 06 2015

Keywords

Examples

			.   n |  p |  a(n) | A001694(a(n)) = A001248(n) = p^2
. ----+----+-------+---------------------------------
.   1 |  2 |     2 |             4
.   2 |  3 |     4 |             9
.   3 |  5 |     6 |            25
.   4 |  7 |    10 |            49
.   5 | 11 |    16 |           121
.   6 | 13 |    20 |           169
.   7 | 17 |    28 |           289
.   8 | 19 |    31 |           361
.   9 | 23 |    39 |           529
.  10 | 29 |    48 |           841
.  11 | 31 |    51 |           961
.  12 | 37 |    65 |          1369
.  13 | 41 |    71 |          1681
.  14 | 43 |    75 |          1849
.  15 | 47 |    84 |          2209
.  16 | 53 |    94 |          2809
.  17 | 59 |   107 |          3481
.  18 | 61 |   110 |          3721
.  19 | 67 |   120 |          4489
.  20 | 71 |   129 |          5041
.  21 | 73 |   133 |          5329
.  22 | 79 |   145 |          6241
.  23 | 83 |   152 |          6889
.  24 | 89 |   163 |          7921
.  25 | 97 |   180 |          9409  .
		

Crossrefs

Programs

  • Haskell
    import Data.List (elemIndex); import Data.Maybe (fromJust)
    a258599 = (+ 1) . fromJust . (`elemIndex` a258567_list) . a000040
    
  • Mathematica
    With[{m = 60}, c = Select[Range[Prime[m]^2], Min[FactorInteger[#][[;; , 2]]] > 1 &]; 1 + Flatten[FirstPosition[c, #] & /@ (Prime[Range[m]]^2)]] (* Amiram Eldar, Feb 07 2023 *)
  • Python
    from math import isqrt
    from sympy import prime, integer_nthroot, factorint
    def A258599(n):
        m = prime(n)**2
        return int(sum(isqrt(m//k**3) for k in range(1, integer_nthroot(m, 3)[0]+1) if all(d<=1 for d in factorint(k).values()))) # Chai Wah Wu, Sep 10 2024

Formula

A001694(a(n)) = A001248(n) = prime(n)^2.
A001694(m) mod prime(n) > 0 for m < a(n).
Also smallest number m such that A258567(m) = prime(n):
A258567(a(n)) = A000040(n) and A258567(m) != A000040(n) for m < a(n).

A258601 a(n) is the index m such that A036967(m) = prime(n)^4.

Original entry on oeis.org

2, 5, 10, 16, 28, 37, 55, 61, 80, 105, 113, 142, 163, 170, 190, 219, 249, 260, 286, 310, 318, 352, 374, 407, 448, 472, 482, 505, 511, 536, 614, 634, 672, 682, 740, 754, 783, 821, 842, 878, 916, 924, 984, 996, 1015, 1032, 1103, 1171, 1201, 1213, 1233, 1270, 1286, 1343, 1379
Offset: 1

Views

Author

Reinhard Zumkeller, Jun 06 2015

Keywords

Comments

A036967(a(n)) = A030514(n) = prime(n)^4;
A036967(m) mod prime(n) > 0 for m < a(n);
also smallest number m such that A258569(m) = prime(n):
A258569(a(n)) = A000040(n) and A258569(m) != A000040(n) for m < a(n).

Examples

			.   n |  p |  a(n) | A036967(a(n)) = A030514(n) = p^4
. ----+----+-------+---------------------------------
.   1 |  2 |     2 |            16
.   2 |  3 |     5 |            81
.   3 |  5 |    10 |           625
.   4 |  7 |    16 |          2401
.   5 | 11 |    28 |         14641
.   6 | 13 |    37 |         28561
.   7 | 17 |    55 |         83521
.   8 | 19 |    61 |        130321
.   9 | 23 |    80 |        279841
.  10 | 29 |   105 |        707281
.  11 | 31 |   113 |        923521
.  12 | 37 |   142 |       1874161
.  13 | 41 |   163 |       2825761
.  14 | 43 |   170 |       3418801
.  15 | 47 |   190 |       4879681
.  16 | 53 |   219 |       7890481
.  17 | 59 |   249 |      12117361
.  18 | 61 |   260 |      13845841
.  19 | 67 |   286 |      20151121
.  20 | 71 |   310 |      25411681
.  21 | 73 |   318 |      28398241
.  22 | 79 |   352 |      38950081
.  23 | 83 |   374 |      47458321
.  24 | 89 |   407 |      62742241
.  25 | 97 |   448 |      88529281
		

Crossrefs

Programs

  • Haskell
    import Data.List (elemIndex); import Data.Maybe (fromJust)
    a258601 = (+ 1) . fromJust . (`elemIndex` a258569_list) . a000040
    
  • PARI
    \\ Gen(limit,k) defined in A036967.
    a(n)=#Gen(prime(n)^4,4) \\ Andrew Howroyd, Sep 10 2024
  • Python
    from math import gcd
    from sympy import prime, integer_nthroot, factorint
    def A258601(n):
        c, m = 0, prime(n)**4
        for u in range(1,integer_nthroot(m,7)[0]+1):
            if all(d<=1 for d in factorint(u).values()):
                for w in range(1,integer_nthroot(a:=m//u**7,6)[0]+1):
                    if gcd(w,u)==1 and all(d<=1 for d in factorint(w).values()):
                        for y in range(1,integer_nthroot(z:=a//w**6,5)[0]+1):
                            if gcd(w,y)==1 and gcd(u,y)==1 and all(d<=1 for d in factorint(y).values()):
                                c += integer_nthroot(z//y**5,4)[0]
        return c # Chai Wah Wu, Sep 10 2024
    

Extensions

a(11) onwards corrected by Chai Wah Wu and Andrew Howroyd, Sep 10 2024

A258602 a(n) is the index m such that A069492(m) = prime(n)^5.

Original entry on oeis.org

2, 5, 12, 20, 37, 45, 68, 82, 106, 142, 154, 196, 219, 234, 260, 305, 342, 360, 407, 434, 451, 496, 528, 573, 635, 668, 681, 720, 737, 770, 885, 919, 966, 984, 1065, 1087, 1139, 1193, 1228, 1283, 1331, 1348, 1440, 1455, 1484, 1509, 1624, 1731, 1767, 1789
Offset: 1

Views

Author

Reinhard Zumkeller, Jun 06 2015

Keywords

Comments

A069492(a(n)) = A050997(n) = prime(n)^5;
A069492(m) mod prime(n) > 0 for m < a(n);
also smallest number m such that A258570(m) = prime(n):
A258570(a(n)) = A000040(n) and A258570(m) != A000040(n) for m < a(n).

Examples

			.   n |  p |  a(n) | A069492(a(n)) = A050997(n) = p^5
. ----+----+-------+---------------------------------
.   1 |  2 |     2 |            32
.   2 |  3 |     5 |           243
.   3 |  5 |    12 |          3125
.   4 |  7 |    20 |         16807
.   5 | 11 |    37 |        161051
.   6 | 13 |    45 |        371293
.   7 | 17 |    68 |       1419857
.   8 | 19 |    82 |       2476099
.   9 | 23 |   106 |       6436343
.  10 | 29 |   142 |      20511149
.  11 | 31 |   154 |      28629151
.  12 | 37 |   196 |      69343957
.  13 | 41 |   219 |     115856201
.  14 | 43 |   234 |     147008443
.  15 | 47 |   260 |     229345007
.  16 | 53 |   305 |     418195493
.  17 | 59 |   342 |     714924299
.  18 | 61 |   360 |     844596301
.  19 | 67 |   407 |    1350125107
.  20 | 71 |   434 |    1804229351
.  21 | 73 |   451 |    2073071593
.  22 | 79 |   496 |    3077056399
.  23 | 83 |   528 |    3939040643
.  24 | 89 |   573 |    5584059449
.  25 | 97 |   635 |    8587340257  .
		

Crossrefs

Programs

  • Haskell
    import Data.List (elemIndex); import Data.Maybe (fromJust)
    a258602 = (+ 1) . fromJust . (`elemIndex` a258570_list) . a000040
    
  • PARI
    \\ Gen(limit,k) defined in A036967.
    a(n)=#Gen(prime(n)^5,5) \\ Andrew Howroyd, Sep 10 2024
  • Python
    from math import gcd
    from sympy import prime, integer_nthroot, factorint
    def A258602(n):
        c, m = 0, prime(n)**5
        for t in range(1,integer_nthroot(m,9)[0]+1):
            if all(d<=1 for d in factorint(t).values()):
                for u in range(1,integer_nthroot(s:=m//t**9,8)[0]+1):
                    if gcd(t,u)==1 and all(d<=1 for d in factorint(u).values()):
                        for w in range(1,integer_nthroot(a:=s//u**8,7)[0]+1):
                            if gcd(u,w)==1 and gcd(t,w)==1 and all(d<=1 for d in factorint(w).values()):
                                for y in range(1,integer_nthroot(z:=a//w**7,6)[0]+1):
                                    if gcd(w,y)==1 and gcd(u,y)==1 and gcd(t,y)==1 and all(d<=1 for d in factorint(y).values()):
                                        c += integer_nthroot(z//y**6,5)[0]
        return c # Chai Wah Wu, Sep 10 2024
    

Extensions

a(11) onwards corrected by Chai Wah Wu and Andrew Howroyd, Sep 10 2024

A258603 a(n) is the index m such that A069493(m) = prime(n)^6.

Original entry on oeis.org

2, 6, 13, 22, 45, 58, 87, 102, 135, 181, 199, 252, 287, 306, 342, 401, 461, 479, 536, 583, 602, 665, 712, 776, 860, 911, 932, 975, 997, 1051, 1212, 1258, 1331, 1356, 1479, 1502, 1580, 1651, 1705, 1784, 1856, 1879, 2013, 2037, 2093, 2113, 2272, 2438, 2484, 2510
Offset: 1

Views

Author

Reinhard Zumkeller, Jun 06 2015

Keywords

Comments

A069493(a(n)) = A030516(n) = prime(n)^6;
A069493(m) mod prime(n) > 0 for m < a(n);
also smallest number m such that A258571(m) = prime(n):
A258571(a(n)) = A000040(n) and A258571(m) != A000040(n) for m < a(n).

Examples

			.   n |  p |  a(n) | A069493(a(n)) = A030516(n) = p^6
. ----+----+-------+---------------------------------
.   1 |  2 |     2 |            64
.   2 |  3 |     6 |           729
.   3 |  5 |    13 |         15625
.   4 |  7 |    22 |        117649
.   5 | 11 |    45 |       1771561
.   6 | 13 |    58 |       4826809
.   7 | 17 |    87 |      24137569
.   8 | 19 |   102 |      47045881
.   9 | 23 |   135 |     148035889
.  10 | 29 |   181 |     594823321
.  11 | 31 |   199 |     887503681
.  12 | 37 |   252 |    2565726409
.  13 | 41 |   287 |    4750104241
.  14 | 43 |   306 |    6321363049
.  15 | 47 |   342 |   10779215329
.  16 | 53 |   401 |   22164361129
.  17 | 59 |   461 |   42180533641
.  18 | 61 |   479 |   51520374361
.  19 | 67 |   536 |   90458382169
.  20 | 71 |   583 |  128100283921
.  21 | 73 |   602 |  151334226289
.  22 | 79 |   665 |  243087455521
.  23 | 83 |   712 |  326940373369
.  24 | 89 |   776 |  496981290961
.  25 | 97 |   860 |  832972004929  .
		

Crossrefs

Programs

  • Haskell
    import Data.List (elemIndex); import Data.Maybe (fromJust)
    a258603 = (+ 1) . fromJust . (`elemIndex` a258571_list) . a000040
    
  • PARI
    \\ Gen(limit,k) defined in A036967.
    a(n)=#Gen(prime(n)^6,6) \\ Andrew Howroyd, Sep 10 2024
  • Python
    from math import gcd
    from sympy import prime, integer_nthroot, factorint
    def A258603(n):
        c, m = 0, prime(n)**6
        for y1 in range(1,integer_nthroot(m,11)[0]+1):
            if all(d<=1 for d in factorint(y1).values()):
                for y2 in range(1,integer_nthroot(z2:=m//y1**11,10)[0]+1):
                    if gcd(y2,y1)==1 and all(d<=1 for d in factorint(y2).values()):
                        for y3 in range(1,integer_nthroot(z3:=z2//y2**10,9)[0]+1):
                            if all(gcd(y3,x)==1 for x in (y1,y2)) and all(d<=1 for d in factorint(y3).values()):
                                for y4 in range(1,integer_nthroot(z4:=z3//y3**9,8)[0]+1):
                                    if all(gcd(y4,x)==1 for x in (y1,y2,y3)) and all(d<=1 for d in factorint(y4).values()):
                                        for y5 in range(1,integer_nthroot(z5:=z4//y4**8,7)[0]+1):
                                            if all(gcd(y5,x)==1 for x in (y1,y2,y3,y4)) and all(d<=1 for d in factorint(y5).values()):
                                                c += integer_nthroot(z5//y5**7,6)[0]
        return c # Chai Wah Wu, Sep 10 2024
    

Extensions

a(11) onwards corrected by Chai Wah Wu and Andrew Howroyd, Sep 10 2024

A069493 6-full numbers: if p divides n then so does p^6.

Original entry on oeis.org

1, 64, 128, 256, 512, 729, 1024, 2048, 2187, 4096, 6561, 8192, 15625, 16384, 19683, 32768, 46656, 59049, 65536, 78125, 93312, 117649, 131072, 139968, 177147, 186624, 262144, 279936, 373248, 390625, 419904, 524288, 531441, 559872, 746496, 823543, 839808
Offset: 1

Views

Author

Benoit Cloitre, Apr 15 2002

Keywords

Comments

a(m) mod prime(n) > 0 for m < A258603(n); a(A258600(n)) = A030516(n) = prime(n)^6. - Reinhard Zumkeller, Jun 06 2015

Examples

			2^7*3^6 = 93312 is a member (although not of A076470).
		

Crossrefs

Cf. A036967, A036966, A001694. Different from A076470.

Programs

  • Haskell
    import Data.Set (singleton, deleteFindMin, fromList, union)
    a069493 n = a069493_list !! (n-1)
    a069493_list = 1 : f (singleton z) [1, z] zs where
       f s q6s p6s'@(p6:p6s)
         | m < p6 = m : f (union (fromList $ map (* m) ps) s') q6s p6s'
         | otherwise = f (union (fromList $ map (* p6) q6s) s) (p6:q6s) p6s
         where ps = a027748_row m
               (m, s') = deleteFindMin s
       (z:zs) = a030516_list
    -- Reinhard Zumkeller, Jun 03 2015
    
  • Mathematica
    Join[{1},Select[Range[900000],Min[FactorInteger[#][[All,2]]]>5&]] (* Harvey P. Dale, Mar 03 2018 *)
  • PARI
    for(n=1,560000,if(n*sumdiv(n,d,isprime(d)/d^6)==floor(n*sumdiv(n,d,isprime(d)/d^6)),print1(n,",")))
    
  • Python
    from math import gcd
    from sympy import factorint, integer_nthroot
    def A069493(n):
        def f(x):
            c = n+x
            for y1 in range(1,integer_nthroot(x,11)[0]+1):
                if all(d<=1 for d in factorint(y1).values()):
                    for y2 in range(1,integer_nthroot(z2:=x//y1**11,10)[0]+1):
                        if gcd(y2,y1)==1 and all(d<=1 for d in factorint(y2).values()):
                            for y3 in range(1,integer_nthroot(z3:=z2//y2**10,9)[0]+1):
                                if gcd(y3,y1)==1 and gcd(y3,y2)==1 and all(d<=1 for d in factorint(y3).values()):
                                    for y4 in range(1,integer_nthroot(z4:=z3//y3**9,8)[0]+1):
                                        if gcd(y4,y1)==1 and gcd(y4,y2)==1 and gcd(y4,y3)==1 and all(d<=1 for d in factorint(y4).values()):
                                            for y5 in range(1,integer_nthroot(z5:=z4//y4**8,7)[0]+1):
                                                if gcd(y5,y1)==1 and gcd(y5,y2)==1 and gcd(y5,y3)==1 and gcd(y5,y4)==1 and all(d<=1 for d in factorint(y5).values()):
                                                    c -= integer_nthroot(z5//y5**7,6)[0]
            return c
        def bisection(f,kmin=0,kmax=1):
            while f(kmax) > kmax: kmax <<= 1
            while kmax-kmin > 1:
                kmid = kmax+kmin>>1
                if f(kmid) <= kmid:
                    kmax = kmid
                else:
                    kmin = kmid
            return kmax
        return bisection(f,n,n) # Chai Wah Wu, Sep 10 2024

Formula

Sum_{n>=1} 1/a(n) = Product_{p prime} (1 + 1/(p^5*(p-1))) = 1.0334657852594050612296726462481884631303137561267151463866539131591664... - Amiram Eldar, Jul 09 2020

A258568 Smallest prime factors of 3-full numbers.

Original entry on oeis.org

1, 2, 2, 3, 2, 2, 3, 5, 2, 2, 3, 2, 7, 2, 2, 5, 2, 3, 2, 2, 2, 2, 11, 2, 2, 2, 2, 3, 13, 7, 2, 2, 5, 3, 2, 2, 2, 2, 17, 2, 2, 2, 2, 3, 19, 2, 2, 2, 2, 3, 2, 3, 2, 2, 2, 2, 23, 2, 11, 2, 5, 2, 2, 7, 3, 2, 2, 2, 3, 2, 2, 2, 2, 2, 29, 2, 2, 2, 3, 13, 31, 3, 2, 2
Offset: 1

Views

Author

Reinhard Zumkeller, Jun 06 2015

Keywords

Crossrefs

Programs

  • Haskell
    a258568 = a020639 . a036966
  • Mathematica
    Table[If[Min[(f = FactorInteger[n])[[;; , 2]]] > 2 || n == 1, f[[1, 1]], Nothing], {n, 1, 30000}] (* Amiram Eldar, Feb 07 2023 *)

Formula

a(n) = A020639(A036966(n)).
a(A258600(n)) = A000040(n) and a(m) != A000040(n) for m < A258600(n).

Extensions

Missing term a(78) inserted by Amiram Eldar, Feb 07 2023
Showing 1-8 of 8 results.