cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-10 of 103 results. Next

A360540 a(n) is the cubefull part of n: the largest divisor of n that is a cubefull number (A036966).

Original entry on oeis.org

1, 1, 1, 1, 1, 1, 1, 8, 1, 1, 1, 1, 1, 1, 1, 16, 1, 1, 1, 1, 1, 1, 1, 8, 1, 1, 27, 1, 1, 1, 1, 32, 1, 1, 1, 1, 1, 1, 1, 8, 1, 1, 1, 1, 1, 1, 1, 16, 1, 1, 1, 1, 1, 27, 1, 8, 1, 1, 1, 1, 1, 1, 1, 64, 1, 1, 1, 1, 1, 1, 1, 8, 1, 1, 1, 1, 1, 1, 1, 16, 81, 1, 1, 1, 1
Offset: 1

Views

Author

Amiram Eldar, Feb 11 2023

Keywords

Crossrefs

Programs

  • Mathematica
    f[p_, e_] := If[e > 2, p^e, 1]; a[n_] := Times @@ f @@@ FactorInteger[n]; Array[a, 100]
  • PARI
    a(n) = {my(f = factor(n)); prod(i=1, #f~, if(f[i, 2] > 2, f[i, 1]^f[i, 2], 1));}

Formula

a(n) = 1 if and only if n is a cubefree number (A004709).
a(n) = n if and only if n is a cubefull number (A036966).
a(n) <= A057521(n) with equality if and only if n is in A337050.
a(n) = n/A360539(n).
Multiplicative with a(p^e) = p^e if e >= 3, and 1 otherwise.
Dirichlet g.f.: zeta(s-1) * Product_{p prime} (1 - p^(1-s) + p^(-s) - p^(1-3*s) - p^(1-2*s) + p^(-2*s) + p^(3-3*s)).

A258600 a(n) is the index m such that A036966(m) = prime(n)^3.

Original entry on oeis.org

2, 4, 8, 13, 23, 29, 39, 45, 57, 75, 81, 99, 110, 117, 130, 149, 169, 176, 197, 209, 212, 236, 250, 270, 295, 309, 317, 328, 337, 354, 399, 414, 436, 445, 477, 483, 506, 529, 541, 563, 585, 591, 631, 635, 654, 657, 697, 747, 758, 765, 781, 803, 809, 845, 864
Offset: 1

Views

Author

Reinhard Zumkeller, Jun 06 2015

Keywords

Examples

			.   n |  p |  a(n) | A036966(a(n)) = A030078(n) = p^3
. ----+----+-------+---------------------------------
.   1 |  2 |     2 |             8
.   2 |  3 |     4 |            27
.   3 |  5 |     8 |           125
.   4 |  7 |    13 |           343
.   5 | 11 |    23 |          1331
.   6 | 13 |    29 |          2197
.   7 | 17 |    39 |          4913
.   8 | 19 |    45 |          6859
.   9 | 23 |    57 |         12167
.  10 | 29 |    75 |         24389
.  11 | 31 |    81 |         29791
.  12 | 37 |    99 |         50653
.  13 | 41 |   110 |         68921
.  14 | 43 |   117 |         79507
.  15 | 47 |   130 |        103823
.  16 | 53 |   149 |        148877
.  17 | 59 |   169 |        205379
.  18 | 61 |   176 |        226981
.  19 | 67 |   197 |        300763
.  20 | 71 |   209 |        357911
.  21 | 73 |   212 |        389017
.  22 | 79 |   236 |        493039
.  23 | 83 |   250 |        571787
.  24 | 89 |   270 |        704969
.  25 | 97 |   295 |        912673  .
		

Crossrefs

Programs

  • Haskell
    import Data.List (elemIndex); import Data.Maybe (fromJust)
    a258600 = (+ 1) . fromJust . (`elemIndex` a258568_list) . a000040
    
  • Mathematica
    With[{m = 60}, c = Select[Range[Prime[m]^3], Min[FactorInteger[#][[;; , 2]]] > 2 &]; 1 + Flatten[FirstPosition[c, #] & /@ (Prime[Range[m]]^3)]] (* Amiram Eldar, Feb 07 2023 *)
  • Python
    from math import gcd
    from sympy import prime, integer_nthroot, factorint
    def A258600(n):
        c, m = 0, prime(n)**3
        for w in range(1,integer_nthroot(m,5)[0]+1):
            if all(d<=1 for d in factorint(w).values()):
                for y in range(1,integer_nthroot(z:=m//w**5,4)[0]+1):
                    if gcd(w,y)==1 and all(d<=1 for d in factorint(y).values()):
                        c += integer_nthroot(z//y**4,3)[0]
        return c # Chai Wah Wu, Sep 10 2024

Formula

A036966(a(n)) = A030078(n) = prime(n)^3.
A036966(m) mod prime(n) > 0 for m < a(n).
Also smallest number m such that A258568(m) = prime(n):
A258568(a(n)) = A000040(n) and A258568(m) != A000040(n) for m < a(n).

Extensions

a(11)-a(55) and example corrected by Amiram Eldar, Feb 07 2023

A356193 a(n) is the smallest cubefull number (A036966) that is a multiple of n.

Original entry on oeis.org

1, 8, 27, 8, 125, 216, 343, 8, 27, 1000, 1331, 216, 2197, 2744, 3375, 16, 4913, 216, 6859, 1000, 9261, 10648, 12167, 216, 125, 17576, 27, 2744, 24389, 27000, 29791, 32, 35937, 39304, 42875, 216, 50653, 54872, 59319, 1000, 68921, 74088, 79507, 10648, 3375, 97336
Offset: 1

Views

Author

Amiram Eldar, Jul 29 2022

Keywords

Comments

First differs from A053149 and A356192 at n=16.

Crossrefs

Programs

  • Mathematica
    f[p_, e_] := p^Max[e, 3]; a[n_] := Times @@ f @@@ FactorInteger[n]; Array[a, 50]
  • PARI
    a(n) = {my(f=factor(n)); prod(i=1, #f~, f[i,1]^max(f[i,2],3))};

Formula

Multiplicative with a(p^e) = p^max(e,3).
a(n) = n iff n is in A036966.
Sum_{n>=1} 1/a(n) = Product_{p prime} (1 + (3*p-2)/(p^3*(p-1))) = 1.76434793373691907811... . - Amiram Eldar, Jul 29 2022
Sum_{k=1..n} a(k) ~ c * n^4, where c = (zeta(3)/4) * Product_{p prime} (1 - 1/p^2 - 1/p^3 + 2/p^5 - 1/p^6 - 1/p^8 + 2/p^9 - 1/p^10) = 0.1559111567... . - Amiram Eldar, Nov 13 2022
a(n) = n * A360541(n). - Amiram Eldar, Sep 01 2023

A337736 The number of cubefull numbers (A036966) between the consecutive cubes n^3 and (n+1)^3.

Original entry on oeis.org

0, 1, 1, 1, 1, 2, 1, 2, 1, 2, 0, 4, 2, 1, 3, 0, 3, 1, 2, 1, 3, 2, 0, 2, 5, 1, 3, 1, 1, 3, 3, 2, 1, 3, 1, 2, 2, 2, 1, 2, 2, 3, 6, 1, 1, 1, 4, 1, 1, 3, 3, 1, 3, 4, 1, 2, 3, 1, 2, 3, 2, 3, 2, 3, 3, 2, 1, 4, 2, 1, 1, 0, 7, 1, 1, 4, 3, 2, 2, 2, 3, 3, 2, 0, 4, 2, 4
Offset: 1

Views

Author

Amiram Eldar, Sep 17 2020

Keywords

Comments

For each k >= 0 the sequence of solutions to a(x) = k has a positive asymptotic density (Shiu, 1991).

Examples

			a(2) = 1 since there is one cubefull number, 16 = 2^4, between 2^3 = 8 and 3^3 = 27.
		

Crossrefs

Programs

  • Mathematica
    cubQ[n_] := Min[FactorInteger[n][[;; , 2]]] > 2; a[n_] := Count[Range[n^3 + 1, (n + 1)^3 - 1], _?cubQ]; Array[a, 100]
  • Python
    from math import gcd
    from sympy import integer_nthroot, factorint
    def A337736(n):
        def f(x):
            c = 0
            for w in range(1,integer_nthroot(x,5)[0]+1):
                if all(d<=1 for d in factorint(w).values()):
                    for y in range(1,integer_nthroot(z:=x//w**5,4)[0]+1):
                        if gcd(w,y)==1 and all(d<=1 for d in factorint(y).values()):
                            c += integer_nthroot(z//y**4,3)[0]
            return c
        return f((n+1)**3-1)-f(n**3) # Chai Wah Wu, Sep 10 2024

Formula

Asymptotic mean: lim_{m->oo} (1/m) Sum_{k=1..m} a(k) = A362974 - 1 = 3.659266... . - Amiram Eldar, May 11 2023

A362986 a(n) = A000203(A036966(n)), the sum of divisors of the n-th cubefull number A036966(n).

Original entry on oeis.org

1, 15, 31, 40, 63, 127, 121, 156, 255, 600, 364, 511, 400, 1240, 1023, 781, 1815, 1093, 2520, 2340, 2047, 3751, 1464, 5080, 5460, 4836, 4095, 3280, 2380, 2801, 7623, 6000, 3906, 6240, 10200, 11284, 9828, 8191, 5220, 11715, 15367, 12400, 16395, 9841, 7240, 20440
Offset: 1

Views

Author

Amiram Eldar, May 12 2023

Keywords

Crossrefs

Programs

  • Mathematica
    DivisorSigma[1, Select[Range[10^4], # == 1 || Min[FactorInteger[#][[;; , 2]]] > 2 &]]
  • PARI
    lista(kmax) = for(k = 1, kmax, if(k==1 || vecmin(factor(k)[, 2]) > 2, print1(sigma(k), ", ")));
    
  • Python
    from itertools import count, islice
    from math import prod
    from sympy import factorint
    def A362986_gen(): # generator of terms
        for n in count(1):
            f = factorint(n)
            if all(e>2 for e in f.values()):
                yield prod((p**(e+1)-1)//(p-1) for p,e in f.items())
    A362986_list = list(islice(A362986_gen(),20)) # Chai Wah Wu, May 21 2023

Formula

Sum_{A036966(k) < x} a(k) = c * x^(4/3) + O(x^(113/96 + eps)), where c = A362985 * A362974 / 4 = 2.8912833599... (Jakimczuk and Lalín, 2022). [corrected Sep 21 2024]
Sum_{k=1..n} a(k) ~ c * n^4, where c = A362985 / (4 * A362974^3) = 0.006135085083... .

A379718 The second Jordan totient function applied to the cubefull numbers: a(n) = A007434(A036966(n)).

Original entry on oeis.org

1, 48, 192, 648, 768, 3072, 5832, 15000, 12288, 31104, 52488, 49152, 115248, 124416, 196608, 375000, 279936, 472392, 497664, 720000, 786432, 1119744, 1756920, 1990656, 2519424, 2880000, 3145728, 4251528, 4798248, 5647152, 4478976, 5531904, 9375000, 9720000, 7962624
Offset: 1

Views

Author

Amiram Eldar, Dec 31 2024

Keywords

Crossrefs

Cf. A007434, A013661, A036966, A371412 (analogous with J_1 = phi), A379715, A379716, A379717.

Programs

  • Mathematica
    f[p_, e_] := (p^2-1) * p^(2*e-2); j2[1] = 1; j2[n_] := Times @@ f @@@ FactorInteger[n]; Join[{1}, j2 /@ Select[Range[20000], AllTrue[Last /@ FactorInteger[#], #1 > 2 &] &]]
  • PARI
    j2(f) = prod(i = 1, #f~, (f[i,1]^2 - 1) * f[i,1]^(2*f[i,2] - 2));
    list(lim) = {my(f); print1(1, ", "); for(k = 2, lim, f = factor(k); if(vecmin(f[, 2]) > 2, print1(j2(f), ", "))); }

Formula

Sum_{n>=1} 1/a(n) = zeta(2)^2 * Product_{p prime} (1 - 2/p^2 + 1/p^4 + 1/p^6) = 1.02964361441212748276... .
In general, Sum_{m cubefull} 1/J_k(m) = zeta(k)^2 * Product_{p prime} (1 - 2/p^k + 1/p^(2*k) + 1/p^(3*k)), for k >= 2, where J_k is the k-th Jordan totient function.
In general, Sum_{m k-full} 1/J_2(m) = zeta(2)^2 * Product_{p prime} (1 - 2/p^2 + 1/p^4 + 1/p^(2*k)), for k >= 2.

A385048 The sum of the unitary divisors of n that are cubefull numbers (A036966).

Original entry on oeis.org

1, 1, 1, 1, 1, 1, 1, 9, 1, 1, 1, 1, 1, 1, 1, 17, 1, 1, 1, 1, 1, 1, 1, 9, 1, 1, 28, 1, 1, 1, 1, 33, 1, 1, 1, 1, 1, 1, 1, 9, 1, 1, 1, 1, 1, 1, 1, 17, 1, 1, 1, 1, 1, 28, 1, 9, 1, 1, 1, 1, 1, 1, 1, 65, 1, 1, 1, 1, 1, 1, 1, 9, 1, 1, 1, 1, 1, 1, 1, 17, 82, 1, 1, 1, 1
Offset: 1

Views

Author

Amiram Eldar, Jun 16 2025

Keywords

Comments

The number of these divisors is A368248(n), and the largest of them is A360540(n).

Crossrefs

The unitary analog of A385005.
The sum of unitary divisors of n that are: A092261 (squarefree), A192066 (odd), A358346 (exponentially odd), A358347 (square), A360720 (powerful), A371242 (cubefree), A380396 (cube), A383763 (exponentially squarefree), A385043 (exponentially 2^n), A385045 (5-rough), A385046 (3-smooth), A385047 (power of 2), this sequence (cubefull), A385049 (biquadratefree).

Programs

  • Mathematica
    f[p_, e_] := If[e <= 2, 1, p^e + 1]; a[1] = 1; a[n_] := Times @@ f @@@ FactorInteger[n]; Array[a, 100]
  • PARI
    a(n) = {my(f = factor(n)); prod(i = 1, #f~, if(f[i, 2] < 3, 1, f[i, 1]^f[i, 2] + 1));}

Formula

Multiplicative with a(p^e) = 1 if e <= 2, and a(p^e) = p^e + 1 if e >= 3.
a(n) = A034448(n) / A371242(n).
a(n) <= A034448(n), with equality if and only if n is cubefull (A036966).
a(n) <= A385005(n), with equality if and only if n is biquadratefree (A046100).
Dirichlet g.f.: zeta(s)*zeta(s-1)*Product_{p prime} (1 - 1/p^(s-1) + 1/p^(3*s-3) - 1/p^(4*s-3)).

A385136 The sum of divisors d of n such that n/d is a cubefull number (A036966).

Original entry on oeis.org

1, 2, 3, 4, 5, 6, 7, 9, 9, 10, 11, 12, 13, 14, 15, 19, 17, 18, 19, 20, 21, 22, 23, 27, 25, 26, 28, 28, 29, 30, 31, 39, 33, 34, 35, 36, 37, 38, 39, 45, 41, 42, 43, 44, 45, 46, 47, 57, 49, 50, 51, 52, 53, 56, 55, 63, 57, 58, 59, 60, 61, 62, 63, 79, 65, 66, 67, 68
Offset: 1

Views

Author

Amiram Eldar, Jun 19 2025

Keywords

Crossrefs

The sum of divisors d of n such that n/d is: A001615 (squarefree), A002131 (odd), A069208 (powerful), A076752 (square), A129527 (power of 2), A254981 (cubefree), A244963 (nonsquarefree), A327626 (cube), A385134 (biquadratefree), A385135 (exponentially odd), this sequence (cubefull), A385137 (3-smooth), A385138 (5-rough), A385139 (exponentially 2^n).

Programs

  • Mathematica
    f[p_, e_] := (p^(e+1) - p^e + p^(e-2) - 1)/(p-1); f[p_, 1] := p; a[1] = 1; a[n_] := Times @@ f @@@ FactorInteger[n]; Array[a, 100]
  • PARI
    a(n) = {my(f = factor(n), p, e); prod(i = 1, #f~, p = f[i,1]; e = f[i,2]; if(e == 1, p, (p^(e+1) - p^e + p^(e-2) - 1)/(p-1)));}

Formula

Multiplicative with a(p) = p and a(p^e) = (p^(e+1) - p^e + p^(e-2) - 1)/(p-1) for e >= 2.
Dirichlet g.f.: zeta(s-1) * zeta(s) * Product_{p prime} (1 - 1/p^s + 1/p^(3*s)).
Sum_{k=1..n} a(k) ~ c * n^2 / 2, where c = zeta(2) * Product_{p prime} (1 - 1/p^2 + 1/p^6) = 1.022486596136980366... .

A360840 3-full numbers (A036966) sandwiched between twin primes.

Original entry on oeis.org

432, 2592, 139968, 444528, 472392, 995328, 3456000, 5174928, 6561000, 10125000, 15552000, 15804072, 17496000, 25299648, 28449792, 37340352, 54675000, 63700992, 85957848, 88723728, 99574272, 120891312, 144027072, 169869312, 177147000, 197413632, 253125000, 259308000
Offset: 1

Views

Author

Amiram Eldar, Feb 23 2023

Keywords

Examples

			432 = 2^4 * 3^3 is a term since it is 3-full and 431 and 433 are twin primes.
		

Crossrefs

Intersection of A014574 and A036966.
Subsequence of A113839.

Programs

  • Mathematica
    Select[6*Range[10^6], PrimeQ[# - 1] && PrimeQ[# + 1] && Min[FactorInteger[#][[;; , 2]]] > 2 &]
  • PARI
    is(n) = isprime(n-1) && isprime(n+1) && vecmin(factor(n)[,2]) > 2;

A363195 Number of divisors of the n-th cubefull number A036966(n).

Original entry on oeis.org

1, 4, 5, 4, 6, 7, 5, 4, 8, 16, 6, 9, 4, 20, 10, 5, 20, 7, 24, 16, 11, 25, 4, 28, 24, 20, 12, 8, 4, 5, 30, 16, 6, 16, 32, 30, 24, 13, 4, 20, 35, 20, 28, 9, 4, 36, 36, 28, 14, 16, 25, 20, 40, 16, 24, 35, 4, 40, 5, 42, 7, 32, 15, 6, 20, 32, 16, 20, 10, 30, 45, 20
Offset: 1

Views

Author

Amiram Eldar, May 21 2023

Keywords

Crossrefs

Similar sequences: A072048, A076400, A363194.

Programs

  • Mathematica
    DivisorSigma[0, Select[Range[25000], # == 1 || Min[FactorInteger[#][[;; , 2]]] > 2 &]]
  • PARI
    lista(kmax) = for(k = 1, kmax, if(k==1 || vecmin(factor(k)[, 2]) > 2, print1(numdiv(k), ", ")));
    
  • Python
    from itertools import count, islice
    from math import prod
    from sympy import factorint
    def A363195_gen(): # generator of terms
        for n in count(1):
            f = factorint(n).values()
            if all(e>2 for e in f):
                yield prod(e+1 for e in f)
    A363195_list = list(islice(A363195_gen(),20)) # Chai Wah Wu, May 21 2023

Formula

a(n) = A000005(A036966(n)).
Sum_{A036966(k) < x} a(k) = c_1 * x^(1/3) * log(x)^3 + c_2 * x^(1/3) * log(x)^2 + c_3 * x^(1/3) * log(x) + c_4 * x^(1/3) + O(x^(7/24 + eps)), where c_1, c_2, c_3 and c_4 are constants. c_1 = Product_{p prime} ((1-1/p)^4 * (1 + 1/((p^(1/3) - 1)^2*p^(1/3)) + 3/(p-p^(2/3))))/162 = 0.1346652397135839416... . [corrected Sep 21 2024]
Showing 1-10 of 103 results. Next