cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-5 of 5 results.

A379717 The second Jordan totient function applied to the cubefree numbers.

Original entry on oeis.org

1, 3, 8, 12, 24, 24, 48, 72, 72, 120, 96, 168, 144, 192, 288, 216, 360, 288, 384, 360, 528, 600, 504, 576, 840, 576, 960, 960, 864, 1152, 864, 1368, 1080, 1344, 1680, 1152, 1848, 1440, 1728, 1584, 2208, 2352, 1800, 2304, 2016, 2808, 2880, 2880, 2520, 3480, 2304
Offset: 1

Views

Author

Amiram Eldar, Dec 31 2024

Keywords

Crossrefs

Cf. A002117, A004709, A007434, A013661, A358039 (analogous with J_1 = phi), A379715, A379716, A379718.

Programs

  • Mathematica
    f[p_, e_] := (p^2-1) * p^(2*e-2); j2[1] = 1; j2[n_] := Times @@ f @@@ FactorInteger[n]; cubeFreeQ[n_] := Max[FactorInteger[n][[;;, 2]]] < 3; j2 /@ Select[Range[100], cubeFreeQ]
  • PARI
    j2(n) = {my(f = factor(n)); prod(i = 1, #f~, (f[i,1]^2 - 1) * f[i,1]^(2*f[i,2] - 2));}
    iscubefree(n) = if(n == 1, 1, vecmax(factor(n)[, 2]) < 3);
    list(lim) = apply(j2, select(iscubefree, vector(lim, i, i)));

Formula

a(n) = A007434(A004709(n)).
Sum_{n>=1} 1/a(n) = zeta(2) * zeta(4) / zeta(8) = 35 / (2*Pi^2) = 1.77312071374091100026... .
In general, Sum_{m cubefree} 1/J_k(m) = zeta(k) * zeta(2*k) / zeta(4*k), for k >= 2, where J_k is the k-th Jordan totient function.
In general, Sum_{m k-free} 1/J_2(m) = zeta(2)^2 * Product_{p prime} (1 - 1/p^2 + 1/p^4 - 1/p^(2*k)), for k >= 2.
Sum_{k=1..n} a(k) ~ c * n^3 / 3, where c = zeta(3)^3 * Product_{p prime} (1 - 2/p^3 + 1/p^5) = 1.23061243656940899916... . - Amiram Eldar, Jan 03 2025

A379715 The second Jordan totient function applied to the squarefree numbers.

Original entry on oeis.org

1, 3, 8, 24, 24, 48, 72, 120, 168, 144, 192, 288, 360, 384, 360, 528, 504, 840, 576, 960, 960, 864, 1152, 1368, 1080, 1344, 1680, 1152, 1848, 1584, 2208, 2304, 2808, 2880, 2880, 2520, 3480, 3720, 2880, 4032, 2880, 4488, 4224, 3456, 5040, 5328, 4104, 5760, 4032
Offset: 1

Views

Author

Amiram Eldar, Dec 30 2024

Keywords

Crossrefs

Cf. A005117, A007434, A013661, A049200 (analogous with J_1 = phi), A330523, A379716, A379717, A379718.

Programs

  • Mathematica
    f[p_, e_] := (p^2-1) * p^(2*e-2); j2[1] = 1; j2[n_] := Times @@ f @@@ FactorInteger[n]; j2 /@ Select[Range[100], SquareFreeQ]
  • PARI
    j2(n) = {my(f = factor(n)); prod(i = 1, #f~, (f[i,1]^2 - 1) * f[i,1]^(2*f[i,2] - 2));}
    list(lim) = apply(j2, select(issquarefree, vector(lim, i, i)));

Formula

a(n) = A007434(A005117(n)).
Sum_{n>=1} 1/a(n) = zeta(2) (A013661) (Sitaramachandrarao, 1985).
In general, Sum_{m squarefree} 1/J_k(m) = zeta(k), for k >= 2, where J_k is the k-th Jordan totient function.
Sum_{k=1..n} a(k) ~ c * n^3 / 3, where c = zeta(2)^3 * Product_{p prime} (1 - 1/p^2 - 1/p^3 + 1/p^4) = A013661^3 * A330523 = 2.38520727393117206135... . - Amiram Eldar, Jan 03 2025

A379716 The second Jordan totient function applied to the powerful numbers: a(n) = A007434(A001694(n)).

Original entry on oeis.org

1, 12, 48, 72, 192, 600, 648, 768, 864, 2352, 3072, 3456, 5832, 7200, 7776, 14520, 15000, 12288, 13824, 28392, 28224, 28800, 31104, 43200, 52488, 49152, 55296, 83232, 69984, 115248, 129960, 112896, 115200, 124416, 169344, 174240, 180000, 196608, 279312, 221184, 375000
Offset: 1

Views

Author

Amiram Eldar, Dec 30 2024

Keywords

Crossrefs

Cf. A001694, A007434, A323333 (analogous with J_1 = phi), A379715, A379717, A379718.

Programs

  • Mathematica
    f[p_, e_] := (p^2-1) * p^(2*e-2); j2[1] = 1; j2[n_] := Times @@ f @@@ FactorInteger[n]; seq[lim_] := j2 /@ Union[Flatten[Table[i^2*j^3, {j, 1, Surd[lim, 3]}, {i, 1, Sqrt[lim/j^3]}]]]; seq[1000]
  • PARI
    j2(n) = {my(f = factor(n)); prod(i = 1, #f~, (f[i,1]^2 - 1) * f[i,1]^(2*f[i,2] - 2));}
    list(lim) = apply(j2, select(ispowerful, vector(lim, i, i)));

Formula

Sum_{n>=1} 1/a(n) = zeta(2)^2 * Product_{p prime} (1 - 2/p^2 + 2/p^4) = 1.13107206648894940601... .
In general, Sum_{m powerful} 1/J_k(m) = zeta(k)^2 * Product_{p prime} (1 - 2/p^k + 2/p^(2*k)), for k >= 2, where J_k is the k-th Jordan totient function.

A379832 The second Jordan totient function applied to the exponentially odd numbers.

Original entry on oeis.org

1, 3, 8, 24, 24, 48, 48, 72, 120, 168, 144, 192, 288, 360, 384, 360, 528, 384, 504, 648, 840, 576, 960, 768, 960, 864, 1152, 1368, 1080, 1344, 1152, 1680, 1152, 1848, 1584, 2208, 2304, 2808, 1944, 2880, 2304, 2880, 2520, 3480, 3720, 2880, 4032, 2880, 4488, 4224
Offset: 1

Views

Author

Amiram Eldar, Jan 03 2025

Keywords

Crossrefs

Cf. A007434, A065463, A185197, A268335, A374456 (analogous with J_1 = phi), A379715, A379716, A379717, A379718, A379833.

Programs

  • Mathematica
    f[p_, e_] := (p^2-1) * p^(2*e-2); j2[1] = 1; j2[n_] := Times @@ f @@@ FactorInteger[n]; expoddQ[n_] := AllTrue[FactorInteger[n][[;; , 2]], OddQ]; j2 /@ Select[Range[100], expoddQ]
  • PARI
    j2(n) = {my(f = factor(n)); prod(i = 1, #f~, (f[i,1]^2 - 1) * f[i,1]^(2*f[i,2] - 2));}
    isexpodd(n) = {my(f = factor(n)); for(i=1, #f~, if(!(f[i, 2] % 2), return (0))); 1;}
    list(lim) = apply(j2, select(isexpodd, vector(lim, i, i)));

Formula

a(n) = A007434(A268335(n)).
Sum_{k=1..n} a(k) ~ c * n^3, where c = 2/(Pi^2 * Product_{p prime} (1 - 1/(p*(p+1)))^3) = A185197 / A065463^3 = 0.57968779180803379088... .
Sum_{n>=1} 1/a(n) = (Pi^6/540) * Product_{p prime} (1 - 1/p^4 + 1/p^6) = 1.67479534964539923068...
In general, Sum_{m exponentially odd} 1/J_k(m) = zeta(k) * zeta(2*k) * Product_{p prime} (1 - 1/p^(2*k) + 1/p^(3*k)), for k >= 2, where J_k is the k-th Jordan totient function.

A379833 The second Jordan totient function applied to the squares.

Original entry on oeis.org

1, 12, 72, 192, 600, 864, 2352, 3072, 5832, 7200, 14520, 13824, 28392, 28224, 43200, 49152, 83232, 69984, 129960, 115200, 169344, 174240, 279312, 221184, 375000, 340704, 472392, 451584, 706440, 518400, 922560, 786432, 1045440, 998784, 1411200, 1119744, 1872792
Offset: 1

Views

Author

Amiram Eldar, Jan 03 2025

Keywords

Crossrefs

Cf. A000290, A002117, A002618 (analogous with J_1 = phi), A007434, A379715, A379716, A379717, A379718, A379832.

Programs

  • Maple
    a:= n-> mul((i[1]^2-1)*i[1]^(4*i[2]-2), i=ifactors(n)[2]):
    seq(a(n), n=1..37);  # Alois P. Heinz, Jan 03 2025
  • Mathematica
    f[p_, e_] := (p^2 - 1) * p^(4*e - 2); a[1] = 1; a[n_] := Times @@ f @@@ FactorInteger[n]; Array[a, 50]
  • PARI
    a(n) = {my(f = factor(n)); prod(i = 1, #f~, (f[i,1]^2 - 1) * f[i,1]^(4*f[i,2] - 2));}

Formula

a(n) = J_2(n^2) = A007434(A000290(n)).
Multiplicative with a(p^e) = (p^2-1) * p^(4*e-2).
Dirichlet g.f.: zeta(s-4)/zeta(s-2).
In general, Dirichlet g.f. of J_k(n^m): zeta(s-m*k)/zeta(s-m*k+k), where J_k is the k-th Jordan totient function.
Sum_{i=1..n} a(i) ~ n^5 / (5*zeta(3)).
In general, Sum_{i=1..n} J_k(i^m) ~ n^(k*m+1) / ((k*m+1)*zeta(k+1)) for k,m >= 1.
Sum_{n>=1} 1/a(n) = (Pi^6/540) * Product_{p prime} (1 - 1/p^2 + 1/p^6) = 1.10666099915727116962...
In general, Sum_{n>=1} 1/J_k(n^m) = zeta(k) * zeta(k*m) * Product_{p prime} (1 - 1/p^k + 1/p^(k*m+k)), for k,m >= 2, and zeta(2) * zeta(m) * Product_{p prime} (1 - 1/p^2 + 1/p^(m+1) + 1/p^(m+2)) for k = 1 and m >= 2.
Showing 1-5 of 5 results.