A327748 Primes p such that the sum of p and the prime before p is not a multiple of 3.
3, 5, 29, 37, 53, 59, 67, 79, 89, 137, 157, 163, 173, 179, 211, 223, 239, 257, 263, 269, 277, 337, 359, 373, 379, 389, 439, 449, 479, 509, 521, 541, 547, 563, 569, 577, 593, 599, 607, 613, 631, 653, 659, 673, 683, 733, 739, 757, 809, 947, 953, 977, 983, 997
Offset: 1
Keywords
Examples
3 is in the sequence because the prime before 3 is 2, and 2 + 3 = 5, and 5 is not divisible by 3. 53 is in the sequence because the prime before 53 is 47, and 47 + 53 = 100, and 100 is not divisible by 3.
Links
- Jason Bard, Table of n, a(n) for n = 1..10000
Programs
-
Mathematica
Select[Prime[Range[2,168]],Mod[#+NextPrime[#,-1],3]!=0&] (* Ivan N. Ianakiev, Oct 08 2019 *)
-
PARI
isok(p) = isprime(p) && (p>2) && ((p+precprime(p-1)) % 3); \\ Michel Marcus, Oct 02 2019
Comments