A260218
a(1) = 2; for n > 1 if n is even a(n) = spf(1 + Product_{odd m,m
2, 3, 2, 5, 2, 3, 2, 17, 2, 3, 2, 5, 2, 3, 2, 257, 2, 3, 2, 5, 2, 3, 2, 17, 2, 3, 2, 5, 2, 3, 2, 65537, 2, 3, 2, 5, 2, 3, 2, 17, 2, 3, 2, 5, 2, 3, 2, 97, 2, 3, 2, 5, 2, 3, 2, 17, 2, 3, 2, 5, 2, 3, 2, 641, 2, 3, 2, 5, 2, 3, 2, 17, 2, 3, 2, 5, 2, 3
Offset: 1
Links
- Antti Karttunen, Table of n, a(n) for n = 1..255
Programs
-
Mathematica
f[n_] := Block[{a = {2}, k, m}, Do[If[EvenQ@ k, AppendTo[a, FactorInteger[Product[a[[m]], {m, 1, k - 1, 2}] + 1][[1, 1]]], AppendTo[a, FactorInteger[Product[a[[m]], {m, 2, k - 1, 2}] + 1][[1, 1]]]], {k, 2, n}]; a]; f@ 80 (* Michael De Vlieger, Jul 20 2015 *)
-
PARI
spf(n)=factor(n)[1, 1] first(m)=my(v=vector(m), i, odd=2, even=1); v[1]=2; for(i=2, m, if(i%2==0, v[i]=spf(odd+1); even*=v[i], v[i]=spf(even+1); odd*=v[i])); v; /* Anders Hellström, Jul 19 2015 */
-
PARI
A020639(n) = if(1==n,n,vecmin(factor(n)[, 1])); memoA260218 = Map(); A260218(n) = if(1==n,2,if(mapisdefined(memoA260218,n),mapget(memoA260218,n), my(k, m, v = if(!(n%2), k=1; m=1; while(k
A260218(k); k += 2); A020639(m+1), k=2; m=1; while(k A260218(k); k += 2); A020639(m+1))); mapput(memoA260218,n,v); (v))); \\ (An incrementally memoized version). Antti Karttunen, Sep 30 2018
Formula
It appears that for odd k, a(k) = 2 and for even k, a(k) = A002586(k/2). - Michel Marcus, Jul 20 2015