cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A258601 a(n) is the index m such that A036967(m) = prime(n)^4.

Original entry on oeis.org

2, 5, 10, 16, 28, 37, 55, 61, 80, 105, 113, 142, 163, 170, 190, 219, 249, 260, 286, 310, 318, 352, 374, 407, 448, 472, 482, 505, 511, 536, 614, 634, 672, 682, 740, 754, 783, 821, 842, 878, 916, 924, 984, 996, 1015, 1032, 1103, 1171, 1201, 1213, 1233, 1270, 1286, 1343, 1379
Offset: 1

Views

Author

Reinhard Zumkeller, Jun 06 2015

Keywords

Comments

A036967(a(n)) = A030514(n) = prime(n)^4;
A036967(m) mod prime(n) > 0 for m < a(n);
also smallest number m such that A258569(m) = prime(n):
A258569(a(n)) = A000040(n) and A258569(m) != A000040(n) for m < a(n).

Examples

			.   n |  p |  a(n) | A036967(a(n)) = A030514(n) = p^4
. ----+----+-------+---------------------------------
.   1 |  2 |     2 |            16
.   2 |  3 |     5 |            81
.   3 |  5 |    10 |           625
.   4 |  7 |    16 |          2401
.   5 | 11 |    28 |         14641
.   6 | 13 |    37 |         28561
.   7 | 17 |    55 |         83521
.   8 | 19 |    61 |        130321
.   9 | 23 |    80 |        279841
.  10 | 29 |   105 |        707281
.  11 | 31 |   113 |        923521
.  12 | 37 |   142 |       1874161
.  13 | 41 |   163 |       2825761
.  14 | 43 |   170 |       3418801
.  15 | 47 |   190 |       4879681
.  16 | 53 |   219 |       7890481
.  17 | 59 |   249 |      12117361
.  18 | 61 |   260 |      13845841
.  19 | 67 |   286 |      20151121
.  20 | 71 |   310 |      25411681
.  21 | 73 |   318 |      28398241
.  22 | 79 |   352 |      38950081
.  23 | 83 |   374 |      47458321
.  24 | 89 |   407 |      62742241
.  25 | 97 |   448 |      88529281
		

Crossrefs

Programs

  • Haskell
    import Data.List (elemIndex); import Data.Maybe (fromJust)
    a258601 = (+ 1) . fromJust . (`elemIndex` a258569_list) . a000040
    
  • PARI
    \\ Gen(limit,k) defined in A036967.
    a(n)=#Gen(prime(n)^4,4) \\ Andrew Howroyd, Sep 10 2024
  • Python
    from math import gcd
    from sympy import prime, integer_nthroot, factorint
    def A258601(n):
        c, m = 0, prime(n)**4
        for u in range(1,integer_nthroot(m,7)[0]+1):
            if all(d<=1 for d in factorint(u).values()):
                for w in range(1,integer_nthroot(a:=m//u**7,6)[0]+1):
                    if gcd(w,u)==1 and all(d<=1 for d in factorint(w).values()):
                        for y in range(1,integer_nthroot(z:=a//w**6,5)[0]+1):
                            if gcd(w,y)==1 and gcd(u,y)==1 and all(d<=1 for d in factorint(y).values()):
                                c += integer_nthroot(z//y**5,4)[0]
        return c # Chai Wah Wu, Sep 10 2024
    

Extensions

a(11) onwards corrected by Chai Wah Wu and Andrew Howroyd, Sep 10 2024