A258601 a(n) is the index m such that A036967(m) = prime(n)^4.
2, 5, 10, 16, 28, 37, 55, 61, 80, 105, 113, 142, 163, 170, 190, 219, 249, 260, 286, 310, 318, 352, 374, 407, 448, 472, 482, 505, 511, 536, 614, 634, 672, 682, 740, 754, 783, 821, 842, 878, 916, 924, 984, 996, 1015, 1032, 1103, 1171, 1201, 1213, 1233, 1270, 1286, 1343, 1379
Offset: 1
Keywords
Examples
. n | p | a(n) | A036967(a(n)) = A030514(n) = p^4 . ----+----+-------+--------------------------------- . 1 | 2 | 2 | 16 . 2 | 3 | 5 | 81 . 3 | 5 | 10 | 625 . 4 | 7 | 16 | 2401 . 5 | 11 | 28 | 14641 . 6 | 13 | 37 | 28561 . 7 | 17 | 55 | 83521 . 8 | 19 | 61 | 130321 . 9 | 23 | 80 | 279841 . 10 | 29 | 105 | 707281 . 11 | 31 | 113 | 923521 . 12 | 37 | 142 | 1874161 . 13 | 41 | 163 | 2825761 . 14 | 43 | 170 | 3418801 . 15 | 47 | 190 | 4879681 . 16 | 53 | 219 | 7890481 . 17 | 59 | 249 | 12117361 . 18 | 61 | 260 | 13845841 . 19 | 67 | 286 | 20151121 . 20 | 71 | 310 | 25411681 . 21 | 73 | 318 | 28398241 . 22 | 79 | 352 | 38950081 . 23 | 83 | 374 | 47458321 . 24 | 89 | 407 | 62742241 . 25 | 97 | 448 | 88529281
Links
- Andrew Howroyd, Table of n, a(n) for n = 1..1000
Programs
-
Haskell
import Data.List (elemIndex); import Data.Maybe (fromJust) a258601 = (+ 1) . fromJust . (`elemIndex` a258569_list) . a000040
-
PARI
\\ Gen(limit,k) defined in A036967. a(n)=#Gen(prime(n)^4,4) \\ Andrew Howroyd, Sep 10 2024
-
Python
from math import gcd from sympy import prime, integer_nthroot, factorint def A258601(n): c, m = 0, prime(n)**4 for u in range(1,integer_nthroot(m,7)[0]+1): if all(d<=1 for d in factorint(u).values()): for w in range(1,integer_nthroot(a:=m//u**7,6)[0]+1): if gcd(w,u)==1 and all(d<=1 for d in factorint(w).values()): for y in range(1,integer_nthroot(z:=a//w**6,5)[0]+1): if gcd(w,y)==1 and gcd(u,y)==1 and all(d<=1 for d in factorint(y).values()): c += integer_nthroot(z//y**5,4)[0] return c # Chai Wah Wu, Sep 10 2024
Extensions
a(11) onwards corrected by Chai Wah Wu and Andrew Howroyd, Sep 10 2024
Comments