A258602 a(n) is the index m such that A069492(m) = prime(n)^5.
2, 5, 12, 20, 37, 45, 68, 82, 106, 142, 154, 196, 219, 234, 260, 305, 342, 360, 407, 434, 451, 496, 528, 573, 635, 668, 681, 720, 737, 770, 885, 919, 966, 984, 1065, 1087, 1139, 1193, 1228, 1283, 1331, 1348, 1440, 1455, 1484, 1509, 1624, 1731, 1767, 1789
Offset: 1
Keywords
Examples
. n | p | a(n) | A069492(a(n)) = A050997(n) = p^5 . ----+----+-------+--------------------------------- . 1 | 2 | 2 | 32 . 2 | 3 | 5 | 243 . 3 | 5 | 12 | 3125 . 4 | 7 | 20 | 16807 . 5 | 11 | 37 | 161051 . 6 | 13 | 45 | 371293 . 7 | 17 | 68 | 1419857 . 8 | 19 | 82 | 2476099 . 9 | 23 | 106 | 6436343 . 10 | 29 | 142 | 20511149 . 11 | 31 | 154 | 28629151 . 12 | 37 | 196 | 69343957 . 13 | 41 | 219 | 115856201 . 14 | 43 | 234 | 147008443 . 15 | 47 | 260 | 229345007 . 16 | 53 | 305 | 418195493 . 17 | 59 | 342 | 714924299 . 18 | 61 | 360 | 844596301 . 19 | 67 | 407 | 1350125107 . 20 | 71 | 434 | 1804229351 . 21 | 73 | 451 | 2073071593 . 22 | 79 | 496 | 3077056399 . 23 | 83 | 528 | 3939040643 . 24 | 89 | 573 | 5584059449 . 25 | 97 | 635 | 8587340257 .
Links
- Andrew Howroyd, Table of n, a(n) for n = 1..1000
Programs
-
Haskell
import Data.List (elemIndex); import Data.Maybe (fromJust) a258602 = (+ 1) . fromJust . (`elemIndex` a258570_list) . a000040
-
PARI
\\ Gen(limit,k) defined in A036967. a(n)=#Gen(prime(n)^5,5) \\ Andrew Howroyd, Sep 10 2024
-
Python
from math import gcd from sympy import prime, integer_nthroot, factorint def A258602(n): c, m = 0, prime(n)**5 for t in range(1,integer_nthroot(m,9)[0]+1): if all(d<=1 for d in factorint(t).values()): for u in range(1,integer_nthroot(s:=m//t**9,8)[0]+1): if gcd(t,u)==1 and all(d<=1 for d in factorint(u).values()): for w in range(1,integer_nthroot(a:=s//u**8,7)[0]+1): if gcd(u,w)==1 and gcd(t,w)==1 and all(d<=1 for d in factorint(w).values()): for y in range(1,integer_nthroot(z:=a//w**7,6)[0]+1): if gcd(w,y)==1 and gcd(u,y)==1 and gcd(t,y)==1 and all(d<=1 for d in factorint(y).values()): c += integer_nthroot(z//y**6,5)[0] return c # Chai Wah Wu, Sep 10 2024
Extensions
a(11) onwards corrected by Chai Wah Wu and Andrew Howroyd, Sep 10 2024
Comments