cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-2 of 2 results.

A074695 Greatest common divisor of n and floor(n^(1/2))^2.

Original entry on oeis.org

1, 1, 1, 4, 1, 2, 1, 4, 9, 1, 1, 3, 1, 1, 3, 16, 1, 2, 1, 4, 1, 2, 1, 8, 25, 1, 1, 1, 1, 5, 1, 1, 1, 1, 5, 36, 1, 2, 3, 4, 1, 6, 1, 4, 9, 2, 1, 12, 49, 1, 1, 1, 1, 1, 1, 7, 1, 1, 1, 1, 1, 1, 7, 64, 1, 2, 1, 4, 1, 2, 1, 8, 1, 2, 1, 4, 1, 2, 1, 16, 81, 1, 1, 3, 1, 1, 3, 1, 1, 9, 1, 1, 3, 1, 1, 3, 1, 1, 9, 100
Offset: 1

Views

Author

Reinhard Zumkeller, Sep 03 2002

Keywords

Crossrefs

Programs

  • Haskell
    a074695 n = gcd n $ a048760 n  -- Reinhard Zumkeller, Jun 05 2015
    
  • Mathematica
    Table[GCD[n,Floor[Sqrt[n]]^2],{n,100}] (* Harvey P. Dale, Aug 12 2018 *)
  • PARI
    a(n) = gcd(n, sqrtint(n)^2); \\ Amiram Eldar, Nov 19 2024

Formula

a(n) = GCD(n, A048760(n)).
a(n) = n iff n is a square.
a(A258613(n)) = 1; a(A258614(n)) > 1. - Reinhard Zumkeller, Jun 05 2015

A258613 Numbers m that are coprime to the largest square <= m, cf. A048760.

Original entry on oeis.org

1, 2, 3, 5, 7, 10, 11, 13, 14, 17, 19, 21, 23, 26, 27, 28, 29, 31, 32, 33, 34, 37, 41, 43, 47, 50, 51, 52, 53, 54, 55, 57, 58, 59, 60, 61, 62, 65, 67, 69, 71, 73, 75, 77, 79, 82, 83, 85, 86, 88, 89, 91, 92, 94, 95, 97, 98, 101, 103, 107, 109, 111, 113, 117
Offset: 1

Views

Author

Reinhard Zumkeller, Jun 05 2015

Keywords

Examples

			a(8) = 13: GCD(13,A048760(13)) = GCD(13,9) = 1.
a(9) = 14: GCD(14,A048760(14)) = GCD(14,9) = 1.
GCD(15,A048760(15)) = GCD(15,9) = 3 > 1, therefore 15 is not a term.
		

Crossrefs

Cf. A013661, A074695, A048760, A258614 (complement).

Programs

  • Haskell
    a258613 n = a258613_list !! (n-1)
    a258613_list = filter ((== 1) . a074695) [1..]
    
  • Mathematica
    Select[Range[200],CoprimeQ[#,Floor[Sqrt[#]]^2]&] (* Harvey P. Dale, Jun 25 2017 *)
  • PARI
    isok(n) = gcd(n, sqrtint(n)^2) == 1; \\ Michel Marcus, Jun 06 2015

Formula

A074695(a(n)) = 1.
The number of terms that do not exceed x is x/zeta(2) + O(sqrt(x)*log(x)) (Lambek and Moser, 1955). - Amiram Eldar, Nov 19 2024
Showing 1-2 of 2 results.