cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-5 of 5 results.

A302257 Number of minimal generating sets {x_1, x_2, ..., x_r} of (Z/nZ)* such that Product_{i=1..r} (x_i)^(e_i) == 1 (mod n) implies that (x_i)^(e_i) == 1 (mod n) for 1 <= i <= r. Here (Z/nZ)* is the multiplicative group of integers modulo n.

Original entry on oeis.org

1, 1, 1, 1, 2, 1, 2, 3, 2, 2, 4, 3, 4, 2, 8, 8, 8, 2, 6, 8, 12, 4, 10, 28, 8, 4, 6, 12, 12, 8, 8, 16, 24, 8, 32, 12, 12, 6, 32, 96, 16, 12, 12, 24, 32, 10, 22, 96, 12, 8, 32, 32, 24, 6, 64, 168, 36, 12, 28, 96, 16, 8, 144, 32, 192, 24, 20, 32, 60, 32, 24, 168, 24, 12, 64, 36, 96, 32
Offset: 1

Views

Author

Jianing Song, Apr 04 2018

Keywords

Comments

Originally named "Decompose the multiplicative group of integers modulo n as a product of cyclic groups C_{k_1} X C_{k_2} X ... X C_{k_m}, where k_i divides k_j for i < j, then a(n) is the number of generating sets {x_k_i} where x_k_i generates C_{k_i}", which is incorrect for n = 35, 39, 45, 52, 55, ...
A minimal generating set of a finitely generated group G is defined as a generating set of G with the least elements. For n >= 3, the number of elements in the minimal generating sets of (Z/nZ)* (denoted by rank((Z/nZ)*)) is given in A046072. The multiplicative group of integers modulo 1 or 2 is the trivial group (has rank 0). The minimal generating set of it is the empty set, which also meets the condition by the convention empty product is 1. - Jianing Song, Jun 27 2018
Equivalently, number of sets {x_1, x_2, ..., x_r} (r = rank((Z/nZ)*)) such that a one-to-one mapping can be set between all products of the form Product_{i=1..r} (x_i)^(e_i) and the elements in (Z/nZ)*, where 0 <= e_i < ord(x_i,n) for 1 <= i <= r (so a necessary condition is that (Z/nZ)* = C_{ord(x_1,n)} X C_{ord(x_2,n)} X ... X C_{ord(x_r,n)}). Here ord(x,n) is the multiplicative order of x modulo n. Such sets are generalizations of primitive roots modulo n (for r = 1). For an element g in (Z/nZ)*, the corresponding e_1, e_2, ..., e_r can be seen as index of g under a given such set {x_1, x_2, ..., x_r} modulo n. For example, for n = 16 and a given such set {3, 15}, we have: 1 == 3^0 * 15^0 (mod 16), 3 == 3^1 * 15^0 (mod 16), 5 == 3^3 * 15^1 (mod 16), 7 == 3^2 * 15^1 (mod 16), 9 == 3^2 * 15^0 (mod 16), 11 == 3^3 * 15^0 (mod 16), 13 == 3^1 * 15^1 (mod 16), 15 == 3^0 * 15^1 (mod 16).
For any finite abelian multiplicative group G and a generating set (not necessarily minimal) S = {x_1, x_2, ..., x_m}, the property "Product_{i=1..m} (x_i)^(e_i) = o implies that (x_i)^(e_i) = o for i = 1..m" (o is the group identity) can be stated as "the elements in S are multiplicatively independent". If G is viewed as an additive group, then the corresponding property is "Sum_{i=1..m} (e_i)*(x_i) = o implies that (e_i)*(x_i) = o for i = 1..m", which can be stated as "the elements in S are linearly independent". For convenience, if the elements in S are multiplicatively independent, we call S a MIS. The link below lists some more general results for MISs. They concern only on finite abelian multiplicative groups but they also have their versions on additive groups. - Jianing Song, Mar 16 2019
Let S = {x_1, x_2, ..., x_r} be a minimal generating set of (Z/nZ)*, then S is a MIS iff all Dirichlet characters modulo n are generated when Chi(x_1), Chi(x_2), ..., Chi(x_r) run through their all possible values. If so, for an element g in (Z/nZ)*, g == Product_{i=1..r} (x_i)^(e_i) (mod n), we have Chi(g) = Product_{i=1..r} Chi(x_i)^(e_i). For example, if we choose {3, 15} as a minimal generating set of (Z/16Z)*, then all 8 Dirichlet characters modulo 16 are generated when Chi(3) runs through {1, -1, i, -i} and Chi(15) runs through {1, -1}. On the other hand, if S is not a MIS, it implies that some values for Chi(x_1), Chi(x_2), ..., Chi(x_r) cannot be taken. Since (x_i)^(e_i) == 1 (mod n) doesn't imply that (x_i)^(e_i) == 1 (mod n) for 1 <= i <= r, suppose that (x_1)^(e_1) !== 1 (mod n), letting Chi(x_1) = exp(2*Pi*i/ord(x_1,n)) and Chi(x_2) = Chi(x_3) = ... = Chi(x_r) = 1 results in 1 = Chi(1) = Product_{i=1..r} Chi(x_i)^(e_i) = Chi(x_1)^(e_1) = exp(2e_1*Pi*i/ord(x_1,n)) != 1, a contradiction. - Jianing Song, Jun 27 2018 [Revised by Jianing Song, Mar 16 2019]
The elements in one MIS that is minimal of (Z/nZ)* is given in the n-th row of A323021. All other such sets can be obtained using group isomorphisms and automorphisms. See Theorem 3 in the link. - Jianing Song, Mar 16 2019

Examples

			For n = 16, we're looking for generating sets {x_1, x_2} such that (x_1)^(e_1) * (x_2)^(e_2) == 1 (mod 16) implies (x_1)^(e_1) == (x_2)^(e_2) == 1 (mod 16). Since (Z/16Z)* = C_2 X C_4, we can suppose that ord(x_1,16) = 4 and ord(x_2,16) = 2, which gives a total of 8 sets: {3, 7}, {5, 7}, {11, 7}, {13, 7}, {3, 15}, {5, 15}, {11, 15} and {13, 15}, so a(16) = 8. Note that {3, 5} is not what we want because 3^2 * 5^2 == 1 (mod 16) but 3^2 == 5^2 == 9 (mod 16).
For n = 35, we're looking for generating sets {x_1, x_2} such that (x_1)^(e_1) * (x_2)^(e_2) == 1 (mod 35) implies (x_1)^(e_1) == (x_2)^(e_2) == 1 (mod 35). Since (Z/35Z)* = C_2 X C_12 = C_4 X C_6, we can suppose that ord(x_1,35) = 12 and ord(x_2,35) = 2 (for example {2, 6}), or ord(x_1,35) = 6 and ord(x_2,35) = 4 (for example {19, 8}), which gives a total of 32 sets, so a(35) = 32.
		

Crossrefs

Programs

Formula

For a given n, let r = rank((Z/nZ)*) (= A046072(n) for n >= 3), then a(n) = A258615(n)*A316089(n)/r!. See these two sequences for explicit formulae. - Jianing Song, Jun 27 2018
If n is a term in A033948 (i.e., (Z/nZ)* is cyclic; rank((Z/nZ)*) = 0 or 1), then a(n) = phi(A033948(n)) = A000010(A033948(n)) = A046144(n).

Extensions

Typo corrected by Jianing Song, Jun 30 2018
More terms from Jianing Song, Jul 03 2018

A117729 Orders k of cyclic groups C_k such that the map "G -> Automorphism group of G" eventually reaches the trivial group when started at C_k.

Original entry on oeis.org

1, 2, 3, 4, 5, 6, 7, 9, 10, 11, 14, 18, 19, 22, 23, 27, 38, 46, 47, 54, 81, 94, 162, 163, 243, 326, 486, 487, 729, 974, 1458, 1459, 2187, 2918, 4374, 6561, 13122, 19683, 39366, 39367, 59049, 78734, 118098, 177147, 354294, 531441, 1062882, 1594323, 3188646, 4782969
Offset: 1

Views

Author

N. J. A. Sloane, based on a communication from J. H. Conway, Apr 14 2006

Keywords

Comments

If the map "G -> Automorphism group of G" eventually reaches the trivial group, then the initial group IS a cyclic group.
From Jianing Song, Oct 12 2019: (Start)
These are numbers k such that every step of the iteration results in a cyclic group, i.e., numbers k such that k, phi(k), phi(phi(k)), phi(phi(phi(k))), ... (or equivalently, k, A258615(k), A258615(A258615(k)), ...) are all in A033948, phi = A000010.
Number of iterations to reach the trivial group:
k = 1: 0;
k = 2: 1;
k = 4: 2;
k = 5, 10: 3;
k = 11, 22: 4;
k = 23, 46: 5;
k = 47, 94: 6;
k = 3^i, 2*3^i, i > 0: i+1;
k = 2*3^i+1, 2*(2*3^i+1), i > 0, 2*3^i+1 is prime: i+2. (End)
From Peter Schorn, Apr 06 2021: (Start)
Since the values of a(n) have a simple formula it is easy to confirm by direct calculation for all cases that A003434(a(n)) = A185816(a(n)), i.e., the number of iterations to reach 1 via the Euler phi function is the same as the number of iterations to reach 1 via the Carmichael lambda function.
A computer search up to n = 10^8 also confirms the conjecture that if A003434(n) = A185816(n) then n is a term of A117729.
(End)

Crossrefs

Programs

  • Maple
    t1:={ 4, 5, 10, 11, 22, 23, 46, 47, 94}; for i from 0 to 30 do t1:={op(t1),3^i, 2*3^i}; if isprime(2*3^i+1) then t1:={op(t1), 2*3^i+1, 2*(2*3^i+1)}; fi; od: convert(t1,list); sort(%);
  • PARI
    ok(k)={my(f=1, t); while(f&&k>1, f=if(k%2, isprimepower(k), k==2 || k==4 || (isprimepower(k/2, &t) && t>2)); k=eulerphi(k)); f}
    { for(n=1, 10^9, if(ok(n), print1(n, ", "))) } \\ Andrew Howroyd, Oct 12 2019

Formula

Consists of the following numbers:
3^i and 2*3^i for all i >= 0;
if 2*3^i+1 is a prime, then also 2*3^i+1 and 2(2*3^i+1);
the exceptional entries 4, 5, 10, 11, 22, 23, 46, 47 and 94.

A305236 Numbers n such that the multiplicative group of integers modulo n is isomorphic to C_m X C_m, m > 1.

Original entry on oeis.org

8, 12, 63, 126, 513, 1026, 2107, 4214, 12625, 25250, 26533, 39609, 53066, 79218, 355023, 710046, 3190833, 4457713, 6381666, 8915426, 19854847, 38463283, 39709694, 76926566, 242138449, 370634743, 484276898, 516465451, 574336561, 701607583, 741269486, 1032930902, 1148673122, 1380336193, 1403215166, 2324581983, 2760672386, 4649163966, 4882890625, 6174434113, 9765781250
Offset: 1

Views

Author

Jianing Song, Jun 19 2018

Keywords

Comments

Note that 24 is only number k such that the multiplicative group of integers modulo k is isomorphic to C_m X C_m X C_m, m > 1.
The number of elements in the multiplicative group of integers modulo a(n) of order d is A007434(d), whenever d is divisible by A002322(a(n)).
The corresponding m (=A002322(a(n))) are 2, 2, 6, 6, 18, 18, 42, 42, 100, 100, 156, 162, 156, 162, 486, 486, 1458, 2028, 1458, 2028, ... Each term in A114874, except for those of the form 2^k, k >= 2, occurs exactly twice in this list.
Numbers k such that A046072(k) = 2 and A316089(k) = 1. - Jianing Song, Sep 15 2018
Except for 8 and 12, these are numbers of the form p^e*((p-1)*p^(e-1) + 1) or 2*p^e*((p-1)*p^(e-1) + 1) where p is an odd prime and (p-1)*p^(e-1) + 1 is prime. - Jianing Song, Apr 13 2019

Examples

			The multiplicative group of integers modulo 63 is isomorphic to C_6 X C_6. There are A007434(1) = 1 element of order 1, A007434(2) = 3 elements of order 2, A007434(3) = 8 elements of order 3, A007434(6) = 24 elements of order 6 modulo 63.
The multiplicative group of integers modulo 513 is isomorphic to C_18 X C_18. There are A007434(1) = 1 element of order 1, A007434(2) = 3 elements of order 2, A007434(3) = 8 elements of order 3, A007434(6) = 24 elements of order 6, A007434(9) = 72 elements of order 9, A007434(18) = 216 elements of order 18 modulo 513.
		

Crossrefs

Cf. A114874.
Odd terms are given by A307527.

Programs

  • PARI
    for(n=1,10^7,if(#znstar(n)[2]==2 && znstar(n)[2][1]==znstar(n)[2][2], print1(n, ", "))) \\ Jianing Song, Sep 15 2018
    
  • PARI
    the_first_entries(nn) = my(u=[]); for(n=2, sqrt(nn), my(v=factor(n), d=#v[, 1], p=v[d, 1], e=v[d, 2]); if(isprime(n+1) && p!=2 && n==(p-1)*p^e, u=concat(u, [(n+1)*p^(e+1)]))); t=concat([8, 12], concat(u, 2*u)); t=vecsort(select(i->(iJianing Song, Apr 13 2019

Formula

A302257(a(n)) = A258615(a(n))/2.

Extensions

Missing a(40) inserted by Jianing Song, Apr 20 2019

A364129 Order of Aut^3(C_n) = Aut(Aut(Aut(C_n))), where C_n is the cyclic group of order n.

Original entry on oeis.org

1, 1, 1, 1, 1, 1, 1, 6, 1, 1, 2, 6, 6, 1, 8, 8, 8, 1, 2, 8, 12, 2, 4, 336, 8, 6, 2, 12, 12, 8, 8, 64, 24, 8, 64, 12, 12, 2, 64, 1152, 192, 12, 12, 24, 64, 4, 10, 1152, 12, 8, 768, 64, 16, 2, 128, 336, 24, 12, 12, 1152, 192, 8, 576, 768, 768, 24, 24, 768, 48, 64, 16, 336, 336, 12, 128, 24, 192, 64, 16, 6144
Offset: 1

Views

Author

Jianing Song, Aug 13 2023

Keywords

Examples

			a(24) = 336 since Aut(C_24) = C_2 X C_2 X C_2, Aut^2(C_24) = PSL(2,7) and Aut(Aut(Aut(C_24))) = PGL(2,7).
a(32) = 64 since Aut(C_32) = C_2 X C_8, Aut^2(C_32) = C_2 X D_8 and Aut^3(C_32) = SmallGroup(64,138).
a(40) = 1152 since Aut(C_40) = C_2 X C_2 X C_4, Aut^2(C_40) = SmallGroup(192,1493) and Aut^3(C_40) = C_2 X SmallGroup(576,8654).
		

Crossrefs

Cf. A000010 (order of Aut(C_n)), A258615 (order of Aut^2(C_n)), A364944 (order of Aut^4(C_n)), A364917 (order of Aut^k(C_n) for all sufficiently large k).

Programs

  • GAP
    A364129 := function(n)
    local G, i, L;
    G := CyclicGroup(n);
    for i in [1..3] do
    G := AutomorphismGroup(G);
    if i = 3 then return Size(G); fi;
    L := DirectFactorsOfGroup(G);
    if List(L, x->IdGroupsAvailable(Size(x))) = List(L, x->true) then
    L := List(L, x->IdGroup(x));
    G := DirectProduct(List(L, x->SmallGroup(x))); # It's more efficient to operate on abstract groups when the abstract structure is available
    fi; od; end;

A364944 Order of Aut^4(C_n) = Aut(Aut(Aut(Aut(C_n)))), where C_n is the cyclic group of order n.

Original entry on oeis.org

1, 1, 1, 1, 1, 1, 1, 6, 1, 1, 1, 6, 6, 1, 8, 8, 8, 1, 1, 8, 12, 1, 2, 336, 8, 6, 1, 12, 12, 8, 8, 384, 144, 8, 384, 12, 12, 1, 384, 4608, 1152, 12, 12, 144, 384, 2, 4, 4608, 12, 8, 1536, 384, 64, 1, 2359296, 336, 144, 12, 12, 4608, 1152, 8, 13824, 1536, 36864, 144, 24
Offset: 1

Views

Author

Jianing Song, Aug 14 2023

Keywords

Examples

			For n = 69, we have Aut(C_69) = C_2 X C_22, Aut^2(C_69) = C_10 X S_3, Aut^3(C_69) = C_4 X D_12 and Aut^4(C_69) = SmallGroup(32,27) X S_3, so a(69) = |SmallGroup(32,27) X S_3| = 192.
For n = 972, we have Aut(C_972) = C_2 X C_162, Aut^2(C_972) = C_18 X D_12, Aut^3(C_972) = C_6 X S_3 X S_4 and Aut^4(C_972) = C_2 X C_2 X D_12 X S_4, so a(972) = |C_2 X C_2 X D_12 X S_4| = 1152.
For n = 1029, we have Aut(C_1029) = C_2 X C_294, Aut^2(C_1029) = C_42 X D_12, Aut^3(C_1029) = C_6 X D_12 X S_4 and Aut^4(C_1029) = D_12 X S_4 X SmallGroup(96,227), so a(1029) = |D_12 X S_4 X SmallGroup(96,227)| = 27648.
For n = 1944, we have Aut(C_1944) = C_2 X C_2 X C_162, Aut^2(C_1944) = C_2 X C_18 X PSL(2,7), Aut^3(C_1944) = C_6 X S_3 X PGL(2,7) and Aut^4(C_1944) = C_2 X C_2 X D_12 X PGL(2,7), so a(1944) = |C_2 X C_2 X D_12 X PGL(2,7)| = 16128.
		

Crossrefs

Cf. A000010 (order of Aut(C_n)), A258615 (order of Aut^2(C_n)), A364129 (order of Aut^3(C_n)), A364917 (order of Aut^k(C_n) for all sufficiently large k).

Programs

  • GAP
    A364944 := function(n)
    local G, i, L;
    G := CyclicGroup(n);
    for i in [1..4] do
    G := AutomorphismGroup(G);
    if i = 4 then return Size(G); fi;
    L := DirectFactorsOfGroup(G);
    if List(L, x->IdGroupsAvailable(Size(x))) = List(L, x->true) then
    L := List(L, x->IdGroup(x));
    G := DirectProduct(List(L, x->SmallGroup(x))); # It's more efficient to operate on abstract groups when the abstract structure is available
    fi; od; end;
    # it should be noted that the calculation of Aut^4(C_n) can by extremely lengthy for even small n (for example n = 80)
Showing 1-5 of 5 results.