A258703 a(n) = floor(n/sqrt(2) - 1/2).
0, 0, 1, 2, 3, 3, 4, 5, 5, 6, 7, 7, 8, 9, 10, 10, 11, 12, 12, 13, 14, 15, 15, 16, 17, 17, 18, 19, 20, 20, 21, 22, 22, 23, 24, 24, 25, 26, 27, 27, 28, 29, 29, 30, 31, 32, 32, 33, 34, 34, 35, 36, 36, 37, 38, 39, 39, 40, 41, 41, 42, 43, 44, 44, 45, 46, 46, 47, 48, 48, 49, 50, 51, 51, 52, 53, 53
Offset: 1
Keywords
Links
- Michel Dekking, Table of n, a(n) for n = 1..10000
- Michel Dekking, Substitution invariant Sturmian words and binary trees, arXiv:1705.08607 [math.CO], (2017).
- Michel Dekking, Substitution invariant Sturmian words and binary trees, Integers, Electronic Journal of Combinatorial Number Theory 18A (2018), #A17.
- M. Lothaire, Algebraic combinatorics on words, Cambridge University Press. Online publication date: April 2013; Print publication year: 2002.
- K. O'Bryant, The sequence of fractional parts of roots, arXiv preprint, arXiv:1410.2927 [math.NT], 2014-2015.
Programs
-
Haskell
a258703 = floor . (/ 2) . subtract 1 . (* sqrt 2) . fromIntegral -- Reinhard Zumkeller, Jun 09 2015
-
Magma
[Floor(n/Sqrt(2) - 1/2): n in [1..80]]; // Vincenzo Librandi, Jun 09 2015
-
Mathematica
Table[Floor[n/Sqrt[2] - 1/2], {n, 1, 100}] (* Vincenzo Librandi, Jun 09 2015 *)
-
PARI
vector(100, n, n--; floor(n/sqrt(2) - 1/2)) \\ G. C. Greubel, Sep 30 2018
Formula
a(n) = floor(1/(exp(sqrt(2)/n)-1)) for all positive integers n [O'Bryant].
a(n) = floor((n*sqrt(2) - 1) / 2). - Reinhard Zumkeller, Jun 09 2015
Extensions
Offset changed from 0 to 1 Michel Dekking, Aug 11 2022
Comments