cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-1 of 1 results.

A257969 Numbers m such that the sum of the digits (sod) of m, m^2, m^3, ..., m^9 are in arithmetic progression: sod(m^(k+1)) - sod(m^k) = f for k=1..8.

Original entry on oeis.org

1, 10, 100, 1000, 7972, 10000, 53941, 79720, 100000, 134242, 539410, 698614, 797200, 1000000, 1342420, 5394100, 6986140, 7525615, 7972000, 9000864, 10000000, 10057054, 13424200, 15366307, 17513566, 20602674, 23280211, 24716905, 25274655, 25665559, 32083981, 34326702, 34446204, 34534816
Offset: 1

Views

Author

Pieter Post, May 15 2015

Keywords

Comments

All powers of 10 are terms of this sequence.
If m is a term, then so is 10*m.
Number of terms < 10^k for k >= 1: 1, 2, 3, 5, 8, 13, 20, 62.

Examples

			7972 is in the sequence, because the difference between the successive sum-of-digit values is 15:
  sod(7972) = 25;
  sod(7972^2) = 40;
  sod(7972^3) = 55;
  sod(7972^4) = 70;
  sod(7972^5) = 85;
  sod(7972^6) = 100;
  sod(7972^7) = 115;
  sod(7972^8) = 130;
  sod(7972^9) = 145;
  sod(7972^10) = 178, where the increment is no longer 15.
But there are seven numbers below 10^9 with a longer sequence (namely, 134242, 23280211, 40809168, 46485637, 59716223, 66413917, and 97134912) where sod(m^(k+1)) - sod(m^k) = f for k=1..9.
  sod(134242) = 16;
  sod(134242^2) = 40;
  sod(134242^3) = 64;
  sod(134242^4) = 88;
  sod(134242^5) = 112;
  sod(134242^6) = 136;
  sod(134242^7) = 160;
  sod(134242^8) = 184;
  sod(134242^9) = 208;
  sod(134242^10) = 232;
  sod(134242^11) = 283, where the increment is no longer 24.
		

Crossrefs

Programs

  • Mathematica
    fQ[n_] := Block[{g}, g[x_] := Power[x, #] & /@ Range@ 9; Length@ DeleteDuplicates@ Differences[Total[IntegerDigits@ #] & /@ g@ n] == 1]; Select[Range@ 1000000, fQ] (* Michael De Vlieger, Jun 12 2015 *)
    Select[Range[35*10^6],Length[Union[Differences[Total/@IntegerDigits[ #^Range[9]]]]] ==1&] (* Harvey P. Dale, Aug 23 2017 *)
  • PARI
    isok(n) = {my(osod = sumdigits(n^2)); my(f = osod - sumdigits(n)); for (k=3, 9, my(nsod = sumdigits(n^k)); if (nsod - osod != f, return (0)); osod = nsod;); return (1);} \\ Michel Marcus, May 28 2015

Formula

{m : sod(m^(k+1)) - sod(m^k) = f for k=1..8}.

Extensions

Corrected and extended by Harvey P. Dale, Aug 23 2017
Edited by Jon E. Schoenfield, Mar 01 2022
Showing 1-1 of 1 results.