A258758 Triangle T(n,k) = C(n+k-1,k)*C(2*n-1,n-k).
1, 1, 1, 3, 6, 3, 10, 30, 30, 10, 35, 140, 210, 140, 35, 126, 630, 1260, 1260, 630, 126, 462, 2772, 6930, 9240, 6930, 2772, 462, 1716, 12012, 36036, 60060, 60060, 36036, 12012, 1716, 6435, 51480, 180180, 360360, 450450, 360360, 180180, 51480
Offset: 0
Examples
[1] [1,1] [3,6,3] [10,30,30,10] [35,140,210,140,35]
Links
- Indranil Ghosh, Rows 0..100, flattened
Programs
-
Magma
[[Binomial(n+k-1,k)*Binomial(2*n-1,n-k): k in [0..n]]: n in [0.. 15]]; // Vincenzo Librandi, Jun 12 2015
-
Mathematica
max = 10; s = (2*(x + y))/(-1 + 4*x + Sqrt[1 - 4*x - 4*y] + 4*y) + O[x]^(max+2) + O[y]^(max+2); t[n_, k_] := SeriesCoefficient[s, {x, 0, n}, {y, 0, k}]; Table[t[n - k, k], {n, 0, max}, {k, 0, n}] // Flatten (* Jean-François Alcover, Jun 10 2015, after Vladimir Kruchinin *) Flatten[Table[Binomial[n+k-1,k] Binomial[2n-1,n-k], {n, 0, 9}, {k, 0, n}]] (* Indranil Ghosh, Mar 04 2017 *)
-
PARI
tabl(nn) = {for (n=0, nn, for(k=0, n, print1(binomial(n+k-1,k)*binomial(2*n-1,n-k),", "););print(););}; tabl(9); \\ Indranil Ghosh, Mar 04 2017
Formula
G.f.: A(x) = 1/(2 - C(x+y)), where C(x)=(1-sqrt(1-4*x))/(2*x) is g.f. of Catalan numbers (A000108).
It appears that T(n, k) = A088218(n)*binomial(n, k). - Michel Marcus, Jun 11 2015
Comments