cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A258758 Triangle T(n,k) = C(n+k-1,k)*C(2*n-1,n-k).

Original entry on oeis.org

1, 1, 1, 3, 6, 3, 10, 30, 30, 10, 35, 140, 210, 140, 35, 126, 630, 1260, 1260, 630, 126, 462, 2772, 6930, 9240, 6930, 2772, 462, 1716, 12012, 36036, 60060, 60060, 36036, 12012, 1716, 6435, 51480, 180180, 360360, 450450, 360360, 180180, 51480
Offset: 0

Views

Author

Vladimir Kruchinin, Jun 10 2015

Keywords

Comments

Triangle T(n,k), read by rows, given by (1, 2, 1/2, 3/2, 2/3, 4/3, 3/4, 5/4, ...) DELTA (1, 2, 1/2, 3/2, 2/3, 4/3, 3/4, 5/4, ...) where DELTA is the operator defined in A084938. - Philippe Deléham, Jun 19 2015

Examples

			[1]
[1,1]
[3,6,3]
[10,30,30,10]
[35,140,210,140,35]
		

Crossrefs

Columns k=0-1 give: A088218, A002457(n-1) for n>0.
Cf. A069723 (row sums, with a shift).

Programs

  • Magma
    [[Binomial(n+k-1,k)*Binomial(2*n-1,n-k): k in [0..n]]: n in [0.. 15]]; // Vincenzo Librandi, Jun 12 2015
    
  • Mathematica
    max = 10; s = (2*(x + y))/(-1 + 4*x + Sqrt[1 - 4*x - 4*y] + 4*y) + O[x]^(max+2) + O[y]^(max+2); t[n_, k_] := SeriesCoefficient[s, {x, 0, n}, {y, 0, k}]; Table[t[n - k, k], {n, 0, max}, {k, 0, n}] // Flatten (* Jean-François Alcover, Jun 10 2015, after Vladimir Kruchinin *)
    Flatten[Table[Binomial[n+k-1,k] Binomial[2n-1,n-k], {n, 0, 9}, {k, 0, n}]] (* Indranil Ghosh, Mar 04 2017 *)
  • PARI
    tabl(nn) = {for (n=0, nn, for(k=0, n, print1(binomial(n+k-1,k)*binomial(2*n-1,n-k),", "););print(););};
    tabl(9); \\ Indranil Ghosh, Mar 04 2017

Formula

G.f.: A(x) = 1/(2 - C(x+y)), where C(x)=(1-sqrt(1-4*x))/(2*x) is g.f. of Catalan numbers (A000108).
It appears that T(n, k) = A088218(n)*binomial(n, k). - Michel Marcus, Jun 11 2015