cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-2 of 2 results.

A258776 Primes in A258774.

Original entry on oeis.org

3, 13, 43, 157, 73, 241, 157, 211, 601, 601, 421, 601, 2971, 1483, 8191, 6163, 3307, 2971, 6481, 8191, 28393, 3907, 28393, 6481, 8191, 28393, 37057, 26407, 12211, 28393, 31153, 113233, 19183, 83233, 113233, 37057, 28393, 71023, 22651, 83233, 37057, 154057
Offset: 1

Views

Author

Robert Price, Jun 09 2015

Keywords

Comments

These primes are neither sorted nor uniqued. They are listed in the order found in A258774.

Crossrefs

Programs

  • Magma
    [a: n in [1..300] | IsPrime(a) where a is 1+SumOfDivisors(n)+ SumOfDivisors(n)^2]; // Vincenzo Librandi, Jun 10 2015
  • Mathematica
    Select[Table[1 + DivisorSigma[1, n] + DivisorSigma[1, n]^2, {n, 1, 10000}], PrimeQ]
    Select[Table[Cyclotomic[3, DivisorSigma[1, n]], {n, 1, 10000}], PrimeQ]

Formula

a(n) = A258774(A258775(n)).

A258774 a(n) = 1 + sigma(n) + sigma(n)^2.

Original entry on oeis.org

3, 13, 21, 57, 43, 157, 73, 241, 183, 343, 157, 813, 211, 601, 601, 993, 343, 1561, 421, 1807, 1057, 1333, 601, 3661, 993, 1807, 1641, 3193, 931, 5257, 1057, 4033, 2353, 2971, 2353, 8373, 1483, 3661, 3193, 8191, 1807, 9313, 1981, 7141, 6163, 5257, 2353
Offset: 1

Views

Author

Robert Price, Jun 09 2015

Keywords

Crossrefs

Cf. A000203 (sum of divisors of n).
Cf. A258775 (indices of primes in this sequence), A258776 (corresponding primes).

Programs

  • Magma
    [1+SumOfDivisors(n)+ SumOfDivisors(n)^2: n in [1..50]]; // Vincenzo Librandi, Jun 10 2015
    
  • Maple
    with(numtheory): A258774:=n->1+sigma(n)+sigma(n)^2: seq(A258774(n), n=1..100); # Wesley Ivan Hurt, Jul 09 2015
  • Mathematica
    Table[1 + DivisorSigma[1, n] + DivisorSigma[1, n]^2, {n, 10000}]
    Table[Cyclotomic[3, DivisorSigma[1, n]], {n, 10000}]
  • PARI
    a(n)=my(s=sigma(n)); s^2+s+1 \\ Charles R Greathouse IV, Jun 10 2015
    
  • Python
    from sympy import divisor_sigma
    def A258774(n):
        return (lambda x: x*(x+1)+1)(divisor_sigma(n)) # Chai Wah Wu, Jun 10 2015

Formula

a(n) = 1 + A000203(n) + A000203(n)^2.
a(n) = 1 + A000203(n) + A072861(n). - Omar E. Pol, Jun 19 2015
Showing 1-2 of 2 results.