cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-3 of 3 results.

A258774 a(n) = 1 + sigma(n) + sigma(n)^2.

Original entry on oeis.org

3, 13, 21, 57, 43, 157, 73, 241, 183, 343, 157, 813, 211, 601, 601, 993, 343, 1561, 421, 1807, 1057, 1333, 601, 3661, 993, 1807, 1641, 3193, 931, 5257, 1057, 4033, 2353, 2971, 2353, 8373, 1483, 3661, 3193, 8191, 1807, 9313, 1981, 7141, 6163, 5257, 2353
Offset: 1

Views

Author

Robert Price, Jun 09 2015

Keywords

Crossrefs

Cf. A000203 (sum of divisors of n).
Cf. A258775 (indices of primes in this sequence), A258776 (corresponding primes).

Programs

  • Magma
    [1+SumOfDivisors(n)+ SumOfDivisors(n)^2: n in [1..50]]; // Vincenzo Librandi, Jun 10 2015
    
  • Maple
    with(numtheory): A258774:=n->1+sigma(n)+sigma(n)^2: seq(A258774(n), n=1..100); # Wesley Ivan Hurt, Jul 09 2015
  • Mathematica
    Table[1 + DivisorSigma[1, n] + DivisorSigma[1, n]^2, {n, 10000}]
    Table[Cyclotomic[3, DivisorSigma[1, n]], {n, 10000}]
  • PARI
    a(n)=my(s=sigma(n)); s^2+s+1 \\ Charles R Greathouse IV, Jun 10 2015
    
  • Python
    from sympy import divisor_sigma
    def A258774(n):
        return (lambda x: x*(x+1)+1)(divisor_sigma(n)) # Chai Wah Wu, Jun 10 2015

Formula

a(n) = 1 + A000203(n) + A000203(n)^2.
a(n) = 1 + A000203(n) + A072861(n). - Omar E. Pol, Jun 19 2015

A258775 Numbers n such that 1 + sigma(n)+ sigma(n)^2 is prime.

Original entry on oeis.org

1, 2, 5, 6, 7, 8, 11, 13, 14, 15, 19, 23, 34, 37, 40, 45, 49, 53, 57, 58, 60, 61, 78, 79, 89, 92, 105, 106, 109, 123, 129, 132, 137, 138, 140, 141, 143, 148, 149, 154, 155, 156, 160, 161, 163, 165, 167, 182, 188, 191, 193, 195, 201, 208, 212, 213, 222, 226
Offset: 1

Views

Author

Robert Price, Jun 09 2015

Keywords

Comments

Also numbers n such that A000203(n) is in A002384. - Robert Israel, Jun 09 2015

Crossrefs

Programs

  • Magma
    [n: n in [1..250] | IsPrime(1 + SumOfDivisors(n)+ SumOfDivisors(n)^2)]; // Vincenzo Librandi, Jun 10 2015
  • Maple
    select(isprime @ (t -> 1+t+t^2) @ numtheory:-sigma, [$1..1000]); # Robert Israel, Jun 09 2015
  • Mathematica
    Select[ Range[10000], PrimeQ[ 1 + DivisorSigma[1, #] + DivisorSigma[1, #]^2] & ]
    Select[ Range[10000], PrimeQ[ Cyclotomic[3, DivisorSigma[1, #]]] &]
  • PARI
    for(n=1,10^3,if(isprime(1+sigma(n)+sigma(n)^2),print1(n,", "))) \\ Derek Orr, Jun 09 2015
    

A259190 Primes of the form sigma(n) + sigma(n)^2 - 1.

Original entry on oeis.org

11, 19, 41, 71, 239, 181, 811, 599, 599, 991, 1559, 419, 599, 3659, 991, 3191, 929, 2351, 2969, 2351, 1481, 3659, 3191, 9311, 1979, 2351, 8741, 2969, 14519, 14519, 3659, 9311, 20879, 4691, 16001, 9311, 20879, 38219, 13109, 19739, 9311, 34781, 16001, 14519, 32579
Offset: 1

Views

Author

K. D. Bajpai, Jun 20 2015

Keywords

Comments

These primes are not sorted nor unique. They are listed in the order found.

Examples

			a(2) = 19: sigma(3) + sigma(3)^2 - 1 = 4 + 16 - 1 = 19, which is prime.
a(5) = 239: sigma(8) + sigma(8)^2 - 1 = 15 + 225 - 1 = 239, which is prime.
		

Crossrefs

Programs

  • Magma
    [k: n in [1..100] | IsPrime(k) where k is SumOfDivisors(n)+ SumOfDivisors(n)^2-1]; // K. D. Bajpai, Jun 20 2015
  • Maple
    with(numtheory): A259190:= n-> (sigma(n) + sigma(n)^2-1): select(isprime,[seq((A259190 (n), n=1..500))]);
  • Mathematica
    Select[Table[DivisorSigma[1, n] + DivisorSigma[1, n]^2 - 1, {n, 1, 10000}], PrimeQ]
  • PARI
    for(n=1, 100, k=sigma(n)+sigma (n)^2-1; if(isprime(k), print1(k,", "))); \\ K. D. Bajpai, Jun 20 2015
    
Showing 1-3 of 3 results.