A258787 Triangle read by rows: T(n, k) = smallest base b > 1 such that p = prime(n) is the k-th base-b Wieferich prime for k = 1, 2, 3, ..., n.
5, 8, 17, 7, 26, 449, 30, 18, 197, 557, 3, 9, 118, 1207, 19601, 22, 146, 19, 361, 8201, 132857, 38, 40, 224, 249, 4625, 296449, 4486949, 54, 28, 68, 99, 4033, 4625, 296449, 126664001, 42, 130, 28, 118, 557, 8201, 997757, 24800401, 2363321449, 14, 41, 374, 1745, 901, 46826, 217682, 9312157, 758427193, 5229752849
Offset: 1
Examples
T(4, 3) = 197, because 197 is the smallest base b such that p = prime(4) = 7 is the 3rd base-b Wieferich prime. Triangle T(n, k) starts: 5; 8, 17; 7, 26, 449; 30, 18, 197, 557; 3, 9, 118, 1207, 19601; 22, 146, 19, 361, 8201, 132857; 38, 40, 224, 249, 4625, 296449, 4486949; 54, 28, 68, 99, 4033, 4625, 296449, 126664001; 42, 130, 28, 118, 557, 8201, 997757, 24800401, 2363321449;
Programs
-
PARI
nextwiefbase(n, a) = a++; while(Mod(a, n^2)^(n-1)!=1, a++); a wiefrank(n, a) = i=0; forprime(p=1, n, if(Mod(a, p^2)^(p-1)==1, i++)); i trianglerows(n) = i=1; while(i <= n, p=prime(i); for(k=1, i, b=2; while(wiefrank(p, b)!=k, b=nextwiefbase(p, b)); print1(b, ", ")); print(""); i++) trianglerows(9) \\ print first nine rows of the triangle
Extensions
More terms from Max Alekseyev, Oct 14 2023