cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-2 of 2 results.

A258797 a(n) = [x^n] Product_{k=1..n} (1+x^k)^2 / x^k.

Original entry on oeis.org

1, 1, 2, 6, 16, 51, 166, 554, 1896, 6595, 23212, 82582, 296393, 1071738, 3900696, 14278074, 52526972, 194108087, 720197524, 2681854490, 10019539112, 37545876368, 141080872362, 531457445806, 2006678785762, 7593123695669, 28789152013570, 109356019134584
Offset: 0

Views

Author

Vaclav Kotesovec, Jun 10 2015

Keywords

Comments

a(n) is half the number of subsets of {-n..n} whose sum is n. - Ilya Gutkovskiy, Jul 09 2025

Crossrefs

Programs

  • Maple
    b:= proc(n, s) option remember; `if`(n*(n+1)/2 b(n$2):
    seq(a(n), n=0..27);  # Alois P. Heinz, Jul 14 2025
  • Mathematica
    Table[SeriesCoefficient[Product[(1+x^k)^2/x^k, {k, 1, n}], {x, 0, n}], {n, 0, 30}]
    Table[SeriesCoefficient[Product[1+x^k, {k, 1, n}]^2, {x, 0, n*(n+3)/2}], {n, 0, 30}]

Formula

a(n) ~ sqrt(3) * 4^n / (sqrt(Pi) * n^(3/2)).

A258799 a(n) = [x^n] Product_{k=1..n} (1+x^k)^3 / x^(2*k).

Original entry on oeis.org

1, 1, 3, 13, 61, 324, 1800, 10340, 60969, 366486, 2237120, 13829487, 86394782, 544547651, 3458637273, 22113504345, 142212705879, 919294844898, 5969839457411, 38927450022860, 254776529381625, 1673102335692514, 11020847332241873, 72798664086854460
Offset: 0

Views

Author

Vaclav Kotesovec, Jun 10 2015

Keywords

Crossrefs

Programs

  • Mathematica
    Table[SeriesCoefficient[Product[(1+x^k)^3/x^(2*k), {k, 1, n}], {x, 0, n}], {n, 0, 30}]
    Table[SeriesCoefficient[Product[1+x^k, {k, 1, n}]^3, {x, 0, n*(n+2)}], {n, 0, 30}]
    (* A program to compute the constant d *) (1+r)^3/r /.FindRoot[Log[1+r]/Log[r] + (PolyLog[2,-r] + Pi^2/12) / Log[r]^2 == 1/6, {r, E}, WorkingPrecision->100]

Formula

a(n) ~ c * d^n / n^(3/2), where d = 7.036711302278424796297167109247361745558645910729132828752853658917..., c = 0.282321145891... .
Showing 1-2 of 2 results.