cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A258831 Expansion of (psi(-x^3) * f(-x, x^2))^2 in powers of x where psi(), f(,) are Ramanujan theta functions.

Original entry on oeis.org

1, -2, 3, -4, 5, -8, 7, -8, 9, -10, 14, -12, 16, -14, 15, -20, 17, -18, 19, -24, 26, -22, 23, -28, 25, -32, 32, -28, 29, -30, 38, -32, 33, -40, 40, -44, 42, -38, 39, -40, 57, -42, 43, -44, 45, -62, 47, -56, 49, -56, 62, -52, 53, -60, 64, -68, 64, -58, 59, -60
Offset: 0

Views

Author

Michael Somos, Jun 11 2015

Keywords

Comments

Ramanujan theta functions: f(q) (see A121373), phi(q) (A000122), psi(q) (A010054), chi(q) (A000700).

Examples

			G.f. = 1 - 2*x + 3*x^2 - 4*x^3 + 5*x^4 - 8*x^5 + 7*x^6 - 8*x^7 + 9*x^8 + ...
G.f. = q^5 - 2*q^11 + 3*q^17 - 4*q^23 + 5*q^29 - 8*q^35 + 7*q^41 - 8*q^47 + ...
		

Crossrefs

Programs

  • GAP
    List([0..70], n -> (-1)^n*Sigma(6*n+5)/6); # Muniru A Asiru, Jan 30 2018
    
  • Magma
    [(-1)^n*SumOfDivisors(6*n+5)/6: n in [0..70]]; // Vincenzo Librandi, Jan 30 2018
  • Maple
    with(numtheory):
    seq((-1)^(n-1)*sigma(6*n - 1)/6, n=1..10^3); # Muniru A Asiru, Jan 30 2018
  • Mathematica
    a[ n_] := If[ n < 0, 0, (-1)^n DivisorSigma[ 1, 6 n + 5] / 6];
    a[ n_] := SeriesCoefficient[ (QPochhammer[ x^6]^2 QPochhammer[ x, -x] / QPochhammer[ x^3, -x^3])^2, {x, 0, n}];
    Table[(-1)^n DivisorSigma[1, 6 n + 5] / 6, {n, 0, 60}] (* Vincenzo Librandi, Jan 30 2018 *)
  • PARI
    {a(n) = if(n<0, 0, (-1)^n*sigma(6*n+5)/6)};
    
  • PARI
    {a(n) = my(A); if(n<0, 0, A = x*O(x^n); polcoeff((eta(x + A)*eta(x^4 + A)*eta(x^6 + A)^4/(eta(x^2+A)^2*eta(x^3+A)*eta(x^12+A)))^2, n))};
    

Formula

Expansion of (f(-x^6)^2 * chi(x^3) / chi(x))^2 in powers of x where chi(), f() are Ramanujan theta functions.
Expansion of q^(-5/6) * (eta(q) * eta(q^4) * eta(q^6)^4 / (eta(q^2)^2 * eta(q^3) * eta(q^12)))^2 in powers of q.
Euler transform of period 12 sequence [-2, 2, 0, 0, -2, -4, -2, 0, 0, 2, -2, -4, ...].
a(n) = (-1)^n * A098098(n) = A208435(2*n + 1) = A208457(2*n + 1). 6 * a(n) = A121613(3*n + 2).
Convolution square of A258832.