cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-2 of 2 results.

A258974 a(n) = 1 + sigma(n)^2.

Original entry on oeis.org

2, 10, 17, 50, 37, 145, 65, 226, 170, 325, 145, 785, 197, 577, 577, 962, 325, 1522, 401, 1765, 1025, 1297, 577, 3601, 962, 1765, 1601, 3137, 901, 5185, 1025, 3970, 2305, 2917, 2305, 8282, 1445, 3601, 3137, 8101, 1765, 9217, 1937, 7057, 6085, 5185, 2305
Offset: 1

Views

Author

Robert Price, Jun 15 2015

Keywords

Crossrefs

Cf. A000203 (sum of divisors of n).
Cf. A258976 (indices of primes in this sequence), A258977 (corresponding primes).

Programs

  • Magma
    [(1 + DivisorSigma(1, n)^2): n in [1..50]]; // Vincenzo Librandi, Jun 16 2015
    
  • Maple
    with(numtheory): A258974:=n->1+sigma(n)^2: seq(A258974(n), n=1..100); # Wesley Ivan Hurt, Jul 09 2015
  • Mathematica
    Table[1 + DivisorSigma[1, n]^2, {n, 10000}]
    Table[Cyclotomic[4, DivisorSigma[1, n]], {n, 10000}]
  • PARI
    a(n)=sigma(n)^2+1 \\ Charles R Greathouse IV, Jun 18 2015

Formula

a(n) = 1 + A000203(n)^2.
a(n) = 1 + A072861(n). - Omar E. Pol, Jun 19 2015
a(n) = A002522(A000203(n)). - Michel Marcus, Jun 25 2015

A258976 Numbers n such that 1 + sigma(n)^2 is prime.

Original entry on oeis.org

1, 3, 5, 13, 14, 15, 19, 22, 23, 27, 28, 34, 39, 40, 44, 48, 53, 54, 56, 58, 65, 68, 73, 75, 82, 83, 84, 87, 88, 89, 95, 99, 104, 108, 109, 114, 116, 118, 124, 125, 129, 133, 134, 135, 136, 145, 149, 152, 158, 171, 177, 178, 179, 186, 202, 203, 209, 210, 215
Offset: 1

Views

Author

Robert Price, Jun 15 2015

Keywords

Crossrefs

Programs

  • Magma
    [n: n in [1..250] | IsPrime(1 + DivisorSigma(1, n)^2)]; // Vincenzo Librandi, Jun 16 2015
    
  • Maple
    with(numtheory): A258976:=n->`if`(isprime(1+sigma(n)^2), n, NULL): seq(A258976(n), n=1..500); # Wesley Ivan Hurt, Jul 09 2015
  • Mathematica
    Select[ Range[10000], PrimeQ[ 1 + DivisorSigma[1, #]^2] & ]
    Select[ Range[10000], PrimeQ[ Cyclotomic[4, DivisorSigma[1, #]]] &]
  • PARI
    lista(nn) = for (n=1, nn, if (isprime(1+sigma(n)^2), print1(n, ", "))); \\ Michel Marcus, Jun 17 2015
Showing 1-2 of 2 results.