cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A258979 Numbers n such that 1 + sigma(n) + sigma(n)^2 + sigma(n)^3 + sigma(n)^4 is prime.

Original entry on oeis.org

1, 4, 6, 9, 11, 12, 14, 15, 23, 27, 29, 32, 43, 54, 56, 61, 64, 67, 73, 87, 95, 106, 109, 128, 134, 138, 146, 154, 163, 165, 171, 172, 197, 213, 235, 252, 253, 258, 259, 273, 274, 290, 300, 301, 303, 307, 314, 326, 330, 335, 358, 387, 393, 394, 403, 404, 412
Offset: 1

Views

Author

Robert Price, Jun 15 2015

Keywords

Crossrefs

Programs

  • Magma
    [n: n in [1..500] | IsPrime(1 + DivisorSigma(1, n) + DivisorSigma(1, n)^2 + DivisorSigma(1, n)^3 + DivisorSigma(1, n)^4)]; // Vincenzo Librandi, Jun 16 2015
    
  • Maple
    with(numtheory): A258979:=n->`if`(isprime(1 + sigma(n) + sigma(n)^2 + sigma(n)^3 + sigma(n)^4), n, NULL): seq(A258979(n), n=1..1000); # Wesley Ivan Hurt, Jul 09 2015
  • Mathematica
    Select[ Range[10000], PrimeQ[ 1 + DivisorSigma[1, #] + DivisorSigma[1, #]^2 + DivisorSigma[1, #]^3 + DivisorSigma[1, #]^4] & ]
    Select[ Range[10000], PrimeQ[ Cyclotomic[5, DivisorSigma[1, #]]] &]
    Select[Range[10000],PrimeQ[Total[DivisorSigma[1,#]^Range[0,4]]]&] (* Harvey P. Dale, Aug 17 2015 *)
  • PARI
    is(n)=my(s=sigma(n)); isprime(s^4+s^3+s^2+s+1) \\ Charles R Greathouse IV, May 22 2017