A258986 Decimal expansion of the multiple zeta value (Euler sum) zetamult(2,3).
7, 1, 1, 5, 6, 6, 1, 9, 7, 5, 5, 0, 5, 7, 2, 4, 3, 2, 0, 9, 6, 9, 7, 3, 8, 0, 6, 0, 8, 6, 4, 0, 2, 6, 1, 2, 0, 9, 2, 5, 6, 1, 2, 0, 4, 4, 3, 8, 3, 3, 9, 2, 3, 6, 4, 9, 2, 2, 2, 2, 4, 9, 6, 4, 5, 7, 6, 8, 6, 0, 8, 5, 7, 4, 5, 0, 5, 8, 2, 6, 5, 1, 1, 5, 4, 2, 5, 2, 3, 4, 4, 6, 3, 6, 0, 0, 7, 9, 8, 9, 6, 4, 1
Offset: 0
Examples
0.711566197550572432096973806086402612092561204438339236492222496457686...
Links
- Dominique Manchon, Arborified multiple zeta values, arXiv:1603.01498 [math.CO], 2016.
- Eric Weisstein's MathWorld, Multivariate Zeta Function
- Wikipedia, Multiple zeta function
Crossrefs
Programs
-
Mathematica
RealDigits[(9/2)*Zeta[5] - 2*Zeta[2]*Zeta[3], 10, 103] // First
-
PARI
zetamult([2,3]) \\ Charles R Greathouse IV, Jan 21 2016
Formula
zetamult(2,3) = Sum_{m>=2} (Sum_{n=1..m-1} 1/(m^2*n^3)) = (9/2)*zeta(5) - 2*zeta(2)*zeta(3).
Equals Sum_{i, j >= 1} 1/(i^3*j^2*binomial(i+j, i)). More generally, for n >= 2, Sum_{i, j >= 1} 1/(i^n*j^2*binomial(i+j, i)) = zeta(2)*zeta(n) - zeta(n+2) - zeta(n,2). - Peter Bala, Aug 05 2025