A259036 Smallest divisor of n^2+1 >= sqrt(n^2+1).
1, 2, 5, 5, 17, 13, 37, 10, 13, 41, 101, 61, 29, 17, 197, 113, 257, 29, 25, 181, 401, 26, 97, 53, 577, 313, 677, 73, 157, 421, 53, 37, 41, 109, 89, 613, 1297, 137, 85, 761, 1601, 58, 353, 50, 149, 1013, 73, 65, 461, 1201, 61, 1301, 541, 281, 2917, 89, 3137, 65
Offset: 0
Examples
a(7) = 10 because 7^2+1 = 2*5*5 and 2*5 = 10 is the smallest divisor >=sqrt(7^2+1) = 7.0710678118...
Links
- Robert Israel, Table of n, a(n) for n = 0..10000
Programs
-
Magma
[Min([d:d in Divisors(k^2+1)|d ge Sqrt(k^2+1) ]):k in [0..60]]; // Marius A. Burtea, Dec 03 2019
-
Maple
f:= proc(n) local m,k; m:= n^2+1; min(select(t -> t^2 >= m, numtheory:-divisors(m))) end proc: map(f, [$0..100]); # Robert Israel, Dec 03 2019
-
Mathematica
Table[Select[Divisors[n^2+1], # >= Sqrt[n^2+1] &, 1] // First, {n, 80}]
-
PARI
concat(1,vector(100,n,d=divisors(n^2+1);k=1;while(d[k]
Derek Orr, Jun 27 2015
Comments