cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A259036 Smallest divisor of n^2+1 >= sqrt(n^2+1).

Original entry on oeis.org

1, 2, 5, 5, 17, 13, 37, 10, 13, 41, 101, 61, 29, 17, 197, 113, 257, 29, 25, 181, 401, 26, 97, 53, 577, 313, 677, 73, 157, 421, 53, 37, 41, 109, 89, 613, 1297, 137, 85, 761, 1601, 58, 353, 50, 149, 1013, 73, 65, 461, 1201, 61, 1301, 541, 281, 2917, 89, 3137, 65
Offset: 0

Views

Author

Michel Lagneau, Jun 17 2015

Keywords

Comments

Subsequence of A033677.
a(n) = n^2+1 if n^2+1 is prime (see A005574) or n=0. - Michel Marcus, Jul 01 2015
If n^2+1=p*q for primes p,q with pA085722), then a(n)=q. - Robert Israel, Dec 03 2019

Examples

			a(7) = 10 because 7^2+1 = 2*5*5 and 2*5 = 10 is the smallest divisor >=sqrt(7^2+1) = 7.0710678118...
		

Crossrefs

Programs

  • Magma
    [Min([d:d in Divisors(k^2+1)|d ge Sqrt(k^2+1) ]):k in [0..60]]; // Marius A. Burtea, Dec 03 2019
  • Maple
    f:= proc(n) local m,k;
      m:= n^2+1;
      min(select(t -> t^2 >= m, numtheory:-divisors(m)))
    end proc:
    map(f, [$0..100]); # Robert Israel, Dec 03 2019
  • Mathematica
    Table[Select[Divisors[n^2+1], # >= Sqrt[n^2+1] &, 1] // First, {n, 80}]
  • PARI
    concat(1,vector(100,n,d=divisors(n^2+1);k=1;while(d[k]Derek Orr, Jun 27 2015
    

Formula

a(n) = A033677(A002522(n)).