A259058 Numbers that are representable in at least two ways as sums of four distinct nonvanishing squares.
454, 530, 614, 706, 806, 914, 1030, 1154, 1286, 1426, 1574, 1730, 1894, 2066, 2246, 2434, 2630, 2834, 3046, 3266, 3494, 3730, 3974, 4226, 4486, 4754, 5030, 5314, 5606, 5906, 6214, 6530, 6854, 7186, 7526, 7874, 8230, 8594, 8966, 9346, 9734
Offset: 0
Examples
n=0: 454 = 1^2 + 8^2 + 10^2 + 17^2 = 2^2 + 5^2 + 13^2 + 16^2. n=2: 614 = 3^2 + 10^2 + 12^2 + 19^2 = 4^2 + 7^2 + 15^2 + 18^2.
References
- W. Sierpiński, 250 Problems in Elementary Number Theory, American Elsevier Publ. Comp., New York, PWN-Polish Scientific Publishers, Warszawa, 1970.
Links
- Index entries for linear recurrences with constant coefficients, signature (3,-3,1).
Programs
-
Magma
[4*n^2 + 72*n + 454: n in [0..50]]; // Vincenzo Librandi, Aug 13 2015
-
Magma
I:=[454, 530, 614]; [n le 3 select I[n] else 3*Self(n-1)-3*Self(n-2)+Self(n-3): n in [1..50]]; // Vincenzo Librandi, Aug 13 2015
-
Mathematica
CoefficientList[Series[2 (227 - 416 x + 193 x^2)/(1 - x)^3, {x, 0, 50}], x] (* Vincenzo Librandi, Aug 13 2015 *)
-
PARI
a(n)=4*n^2+72*n+454 \\ Charles R Greathouse IV, Jun 17 2017
Formula
a(n) = 4*n^2 + 72*n + 454 = 2*A259059(n). See the comment for the sum of four squares in two ways.
O.g.f.: 2*(227 - 416*x + 193*x^2)/(1-x)^3.
a(n) = 3*a(n-1)-3*a(n-2)+a(n-3). - Vincenzo Librandi, Aug 13 2015
Comments