A259059
One half of numbers representable in at least two different ways as sums of four distinct nonvanishing squares. See A259058 for these numbers and their representations.
Original entry on oeis.org
227, 265, 307, 353, 403, 457, 515, 577, 643, 713, 787, 865, 947, 1033, 1123, 1217, 1315, 1417, 1523, 1633, 1747, 1865, 1987, 2113, 2243, 2377, 2515, 2657, 2803, 2953, 3107, 3265, 3427, 3593, 3763, 3937, 4115, 4297, 4483, 4673, 4867, 5065, 5267, 5473
Offset: 0
- W. Sierpiński, 250 Problems in Elementary Number Theory, American Elsevier Publ. Comp., New York, PWN-Polish Scientific Publishers, Warszawa, 1970, Problem 227, p. 20 and p. 110.
-
[2*n^2+36*n+227: n in [0..50]]; // Vincenzo Librandi, Aug 13 2015
-
I:=[227, 265, 307]; [n le 3 select I[n] else 3*Self(n-1)-3*Self(n-2)+Self(n-3): n in [1..50]]; // Vincenzo Librandi, Aug 13 2015
-
A259059:=n->2*n^2 + 36*n + 227: seq(A259059(n), n=0..50); # Wesley Ivan Hurt, Aug 13 2015
-
CoefficientList[Series[(227 - 416 x + 193 x^2)/(1 - x)^3, {x, 0, 50}], x] (* Vincenzo Librandi, Aug 13 2015 *)
-
a(n)=2*n^2+36*n+227 \\ Charles R Greathouse IV, Jun 17 2017
A223727
Numbers which are a sum of four distinct nonzero squares where the summands have no common factor > 1.
Original entry on oeis.org
30, 39, 46, 50, 51, 54, 57, 62, 63, 65, 66, 70, 71, 74, 75, 78, 79, 81, 84, 85, 86, 87, 90, 91, 93, 94, 95, 98, 99, 102, 105, 106, 107, 109, 110, 111, 113, 114, 116, 117, 118, 119, 121, 122, 123, 125, 126, 127, 129, 130, 131, 133, 134, 135, 137, 138, 139, 140
Offset: 1
a(1) = 30 because the numbers 0,...,29 have no representation as a sum of four distinct nonzero squares, and 30 has one representation given by the quadruple [1,2,3,4] which is primitive.
a(16) = 78 has three such representations given by the quadruples [1, 2, 3, 8], [1, 4, 5, 6] and [2, 3, 4, 7] which are all primitive. Hence A223728(16) = 3. This is the first entry with more than one (primitive) representation.
a(23) = 90 has multiplicity 2 = A223728 because there are two primitive quadruples [1, 2, 6, 7] and [1, 3, 4, 8].
a(71) = 156 has multiplicity A223728(71) = 2 (see a comment above).
A259060
Numbers that are representable in at least two ways as sums of four distinct nonvanishing cubes.
Original entry on oeis.org
6426, 7900, 9614, 11592, 13858, 16436, 19350, 22624, 26282, 30348, 34846, 39800, 45234, 51172, 57638, 64656, 72250, 80444, 89262, 98728, 108866, 119700, 131254, 143552, 156618, 170476, 185150, 200664, 217042, 234308, 252486, 271600, 291674
Offset: 0
a(0) = 6426 = 1^3 + 8^3 + 10^3 + 17^3 = 2^3 + 5^3 + 13^3 + 16^3.
a(1) = 7900 = 2^3 + 9^3 + 11^3 + 18^3 = 3^3 + 6^3 + 14^3 + 17^3.
- W. Sierpiński, 250 Problems in Elementary Number Theory, American Elsevier Publ. Comp., New York, PWN-Polish Scientific Publishers, Warszawa, 1970.
-
[(2*(n+9))*(2*n^2+36*n+357): n in [0..50]]; // Vincenzo Librandi, Aug 13 2015
-
I:=[6426,7900,9614,11592]; [n le 4 select I[n] else 4*Self(n-1)-6*Self(n-2)+4*Self(n-3)-Self(n-4): n in [1..50]]; // Vincenzo Librandi, Aug 13 2015
-
CoefficientList[Series[2 (3213 - 8902 x + 8285 x^2 - 2584 x^3)/(1 - x)^4, {x, 0, 50}], x] (* Vincenzo Librandi, Aug 13 2015 *)
LinearRecurrence[{4,-6,4,-1},{6426,7900,9614,11592},40] (* Harvey P. Dale, Sep 30 2016 *)
Showing 1-3 of 3 results.
Comments