A261241 One half of numbers representable in at least two different ways as sums of four nonvanishing cubes. See A259060 for these numbers and their representations.
3213, 3950, 4807, 5796, 6929, 8218, 9675, 11312, 13141, 15174, 17423, 19900, 22617, 25586, 28819, 32328, 36125, 40222, 44631, 49364, 54433, 59850, 65627, 71776, 78309, 85238, 92575, 100332, 108521, 117154, 126243, 135800, 145837, 156366
Offset: 0
References
- W. Sierpiński, 250 Problems in Elementary Number Theory, American Elsevier Publ. Comp., New York, PWN-Polish Scientific Publishers, Warszawa, 1970, Problem 227, p. 20 and p. 110.
Links
- Index entries for linear recurrences with constant coefficients, signature (4,-6,4,-1).
Crossrefs
Cf. A259060.
Programs
-
Magma
[(n+9)*(2*n^2 + 36*n + 357): n in [0..50]]; // Vincenzo Librandi, Aug 13 2015
-
Magma
I:=[3213,3950,4807,5796]; [n le 4 select I[n] else 4*Self(n-1)-6*Self(n-2)+4*Self(n-3)-Self(n-4): n in [1..50]]; // Vincenzo Librandi, Aug 13 2015
-
Mathematica
CoefficientList[Series[(3213 - 8902 x + 8285 x^2 - 2584 x^3)/(1 - x)^4, {x, 0, 50}], x] (* Vincenzo Librandi, Aug 13 2015 *)
Formula
a(n) = (n+9)*(2*n^2 + 36*n + 357), n >= 0.
O.g.f.: (3213 - 8902*x + 8285*x^2 - 2584*x^3)/(1-x)^4.
a(n) = 4*a(n-1)-6*a(n-2)+4*a(n-3)-a(n-4). - Vincenzo Librandi, Aug 13 2015
Comments