A259059 One half of numbers representable in at least two different ways as sums of four distinct nonvanishing squares. See A259058 for these numbers and their representations.
227, 265, 307, 353, 403, 457, 515, 577, 643, 713, 787, 865, 947, 1033, 1123, 1217, 1315, 1417, 1523, 1633, 1747, 1865, 1987, 2113, 2243, 2377, 2515, 2657, 2803, 2953, 3107, 3265, 3427, 3593, 3763, 3937, 4115, 4297, 4483, 4673, 4867, 5065, 5267, 5473
Offset: 0
References
- W. SierpiĆski, 250 Problems in Elementary Number Theory, American Elsevier Publ. Comp., New York, PWN-Polish Scientific Publishers, Warszawa, 1970, Problem 227, p. 20 and p. 110.
Links
- Index entries for linear recurrences with constant coefficients, signature (3,-3,1).
Crossrefs
Cf. A259058.
Programs
-
Magma
[2*n^2+36*n+227: n in [0..50]]; // Vincenzo Librandi, Aug 13 2015
-
Magma
I:=[227, 265, 307]; [n le 3 select I[n] else 3*Self(n-1)-3*Self(n-2)+Self(n-3): n in [1..50]]; // Vincenzo Librandi, Aug 13 2015
-
Maple
A259059:=n->2*n^2 + 36*n + 227: seq(A259059(n), n=0..50); # Wesley Ivan Hurt, Aug 13 2015
-
Mathematica
CoefficientList[Series[(227 - 416 x + 193 x^2)/(1 - x)^3, {x, 0, 50}], x] (* Vincenzo Librandi, Aug 13 2015 *)
-
PARI
a(n)=2*n^2+36*n+227 \\ Charles R Greathouse IV, Jun 17 2017
Formula
a(n) = A259058(n)/2.
a(n) = 2*n^2 + 36*n + 227.
O.g.f.: (227 - 416*x + 193*x^2)/(1-x)^3.
a(n) = 3*a(n-1)-3*a(n-2)+a(n-3). - Vincenzo Librandi, Aug 13 2015
Comments