cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A259171 Decimal expansion of Sum_{m>=1} 1/(m^2 + 1).

Original entry on oeis.org

1, 0, 7, 6, 6, 7, 4, 0, 4, 7, 4, 6, 8, 5, 8, 1, 1, 7, 4, 1, 3, 4, 0, 5, 0, 7, 9, 4, 7, 5, 0, 0, 0, 0, 4, 9, 0, 4, 4, 5, 6, 5, 6, 2, 6, 6, 4, 0, 3, 8, 1, 6, 6, 6, 5, 5, 7, 5, 0, 6, 2, 4, 8, 4, 3, 9, 0, 1, 5, 4, 2, 4, 7, 9, 1, 8, 3, 1, 0, 0, 2, 1, 7, 4, 3, 5
Offset: 1

Views

Author

Keywords

Comments

Essentially the same as A100554 and A113319. - R. J. Mathar, Jul 06 2015

Examples

			1.07667404746858117413405079475000049044565626640381666557
		

Crossrefs

Programs

  • Maple
    evalf[120]((Pi*coth(Pi)-1)/2); # Muniru A Asiru, Dec 21 2018
  • Mathematica
    N[Sum[1/(k^2+1),{k,Infinity}],1000]//RealDigits//First
  • PARI
    (Pi*cosh(Pi)/sinh(Pi)-1)/2 \\ Michel Marcus, Jun 28 2015
    
  • PARI
    sumnumrat(1/(x^2+1), 1) \\ Charles R Greathouse IV, Jan 20 2022

Formula

Equals (Pi*coth(Pi)-1)/2. - Vaclav Kotesovec, Jun 27 2015
Equals Integral_{x>=0} sin(x)/(exp(x) - 1) dx. - Amiram Eldar, Aug 16 2020
Equals Integral_{x>=0} (sin(x)/sinh(x))^2 dx. - Amiram Eldar, Dec 11 2023