cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-10 of 19 results. Next

A113319 Decimal expansion of Sum_{k>=0} 1/(k^2+1).

Original entry on oeis.org

2, 0, 7, 6, 6, 7, 4, 0, 4, 7, 4, 6, 8, 5, 8, 1, 1, 7, 4, 1, 3, 4, 0, 5, 0, 7, 9, 4, 7, 5, 0, 0, 0, 0, 4, 9, 0, 4, 4, 5, 6, 5, 6, 2, 6, 6, 4, 0, 3, 8, 1, 6, 6, 6, 5, 5, 7, 5, 0, 6, 2, 4, 8, 4, 3, 9, 0, 1, 5, 4, 2, 4, 7, 9, 1, 8, 3, 1, 0, 0, 2, 1, 7, 4, 3, 5, 6, 5, 5, 5, 1, 7, 5, 9, 3, 9, 5, 4, 9, 1, 8, 7, 6, 5, 1
Offset: 1

Views

Author

Benoit Cloitre, Jan 07 2006

Keywords

Comments

Known to be transcendental. After n=2 it is the same as A100554(n).
Imaginary part of psi(I) (for the real part, see A248177). - Stanislav Sykora, Oct 03 2014

Examples

			2.076674047468581174134050794750000490445656266403816665575062484390...
		

References

  • Michel Waldschmidt, Elliptic functions and transcendance, Surveys in number theory, 143-188, Dev. Math., 17, Springer, New York, 2008.

Crossrefs

Cf. A013661 (Sum_{i>=1} 1/i^2), A232883 (Sum_{i>=0} 1/(2*i^2+1)). - Bruno Berselli, Dec 02 2013
Cf. A248177.
Essentially the same as A100554 and A259171.

Programs

Formula

Equals 1/2 + Pi /(2*tanh(Pi)).
Equals 1+Integral_{x >= 0} sin(x)/(exp(x)-1) dx. - Robert FERREOL, Jan 12 2016.
Equals Sum_{k>=0} (-1)^(k+1)*(zeta(2*k) - 1). - Amiram Eldar, Apr 28 2025

Extensions

Offset changed from 0 to 1 by Bruno Berselli, Dec 02 2013

A071253 a(n) = n^2*(n^2+1).

Original entry on oeis.org

0, 2, 20, 90, 272, 650, 1332, 2450, 4160, 6642, 10100, 14762, 20880, 28730, 38612, 50850, 65792, 83810, 105300, 130682, 160400, 194922, 234740, 280370, 332352, 391250, 457652, 532170, 615440, 708122, 810900, 924482, 1049600, 1187010, 1337492, 1501850, 1680912
Offset: 0

Views

Author

N. J. A. Sloane, Jun 12 2002

Keywords

Comments

The identity (n^5 + n^3)^2 + (n^2*(n^2 + 1))^2 = n*(n^3 + n)^3 can be written as A155977(n)^2 + a(n)^2 = n*A034262(n)^3. - Vincenzo Librandi, Aug 08 2010

Crossrefs

Programs

Formula

a(n) = A002522(n)*A000290(n). - Zerinvary Lajos, Apr 20 2008
a(n) = (1/4)*sinh(2*arcsinh(n))^2. - Artur Jasinski, Feb 10 2010
G.f.: 2*x*(1+x)*(1+4*x+x^2)/(1-x)^5. - Colin Barker, Jan 08 2012
a(n) = A002378(A000290(n)). - Rick L. Shepherd, Sep 22 2014
Sum_{n>=1} 1/a(n) = 0.5682... = Pi^2/6- (Pi*coth Pi-1)/2 = A013661 - A259171 [J. Math. Anal. Appl. 316 (2006) 328]. - R. J. Mathar, Oct 18 2019
a(n) = 2*A037270(n). - R. J. Mathar, Oct 18 2019
Sum_{n>=1} (-1)^(n+1)/a(n) = Pi^2/12 - 1/2 + Pi*cosech(Pi)/2. - Amiram Eldar, Nov 05 2020
E.g.f.: exp(x)*x*(2 + 8*x + 6*x^2 + x^3). - Stefano Spezia, Oct 08 2022
a(n) = 5*a(n-1) - 10*a(n-2) + 10*a(n-3) - 5*a(n-4) + a(n-5). - Wesley Ivan Hurt, Apr 16 2023

A329083 Decimal expansion of Sum_{k>=0} 1/(k^2+2).

Original entry on oeis.org

1, 3, 6, 1, 0, 2, 8, 1, 0, 0, 5, 7, 3, 7, 2, 7, 9, 2, 2, 8, 2, 1, 3, 3, 2, 1, 5, 8, 5, 1, 8, 2, 3, 4, 6, 3, 6, 8, 7, 2, 8, 5, 3, 5, 6, 0, 7, 0, 6, 9, 3, 0, 7, 2, 3, 3, 4, 9, 4, 7, 8, 9, 0, 0, 1, 6, 0, 7, 8, 2, 1, 1, 4, 6, 3, 6, 5, 5, 4, 4, 4, 5, 7, 3, 7, 6, 1, 5, 1, 4, 7
Offset: 1

Views

Author

Jianing Song, Nov 04 2019

Keywords

Comments

In general, for complex numbers z, if we define F(z) = Sum_{k>=0} 1/(k^2+z), f(z) = Sum_{k>=1} 1/(k^2+z), then we have:
F(z) = (1 + sqrt(z)*Pi*coth(sqrt(z)*Pi))/(2z), z != 0, -1, -4, -9, -16, ...;
f(z) = (-1 + sqrt(z)*Pi*coth(sqrt(z)*Pi))/(2z), z != 0, -1, -4, -9, -16, ...; Pi^2/6, z = 0. Note that f(z) is continuous at z = 0.
This sequence gives F(2).
This and A329090 are essentially the same, but both sequences are added because some people may search for this, and some people may search for A329090.

Examples

			1.36102810057372792282...
		

Crossrefs

Cf. A329080 (F(-5)), A329081 (F(-3)), A329082 (F(-2)), A113319 (F(1)), this sequence (F(2)), A329084 (F(3)), A329085 (F(4)), A329086 (F(5)).
Cf. A329087 (f(-5)), A329088 (f(-3)), A329089 (f(-2)), A013661 (f(0)), A259171 (f(1)), A329090 (f(2)), A329091 (f(3)), A329092 (f(4)), A329093 (f(5)).

Programs

  • Mathematica
    RealDigits[(1 + Sqrt[2]*Pi*Coth[Sqrt[2]*Pi])/4, 10, 120][[1]] (* Amiram Eldar, Jun 17 2023 *)
  • PARI
    default(realprecision, 100); my(F(x) = (1 + (sqrt(x)*Pi)/tanh(sqrt(x)*Pi))/(2*x)); F(2)
    
  • PARI
    sumnumrat(1/(x^2+2),0) \\ Charles R Greathouse IV, Jan 20 2022

Formula

Equals (1 + (sqrt(2)*Pi)*coth(sqrt(2)*Pi))/4 = (1 + (sqrt(-2)*Pi)*cot(sqrt(-2)*Pi))/4.

A329084 Decimal expansion of Sum_{k>=0} 1/(k^2+3).

Original entry on oeis.org

1, 0, 7, 3, 6, 0, 0, 4, 0, 9, 9, 1, 5, 1, 8, 4, 1, 1, 5, 9, 1, 3, 9, 3, 6, 2, 9, 8, 1, 5, 8, 1, 4, 5, 3, 1, 1, 2, 7, 6, 4, 4, 2, 6, 3, 5, 7, 1, 8, 7, 8, 4, 5, 7, 8, 9, 6, 0, 3, 6, 8, 7, 5, 1, 9, 5, 8, 6, 6, 7, 5, 2, 3, 1, 8, 4, 5, 6, 3, 4, 5, 9, 8, 8, 5, 8, 4, 8, 2, 4, 9
Offset: 1

Views

Author

Jianing Song, Nov 04 2019

Keywords

Comments

In general, for complex numbers z, if we define F(z) = Sum_{k>=0} 1/(k^2+z), f(z) = Sum_{k>=1} 1/(k^2+z), then we have:
F(z) = (1 + sqrt(z)*Pi*coth(sqrt(z)*Pi))/(2z), z != 0, -1, -4, -9, -16, ...;
f(z) = (-1 + sqrt(z)*Pi*coth(sqrt(z)*Pi))/(2z), z != 0, -1, -4, -9, -16, ...; Pi^2/6, z = 0. Note that f(z) is continuous at z = 0.
This sequence gives F(3).

Examples

			1.07360040991518411591...
		

Crossrefs

Cf. A329080 (F(-5)), A329081 (F(-3)), A329082 (F(-2)), A113319 (F(1)), A329083 (F(2)), this sequence (F(3)), A329085 (F(4)), A329086 (F(5)).
Cf. A329087 (f(-5)), A329088 (f(-3)), A329089 (f(-2)), A013661 (f(0)), A259171 (f(1)), A329090 (f(2)), A329091 (f(3)), A329092 (f(4)), A329093 (f(5)).

Programs

  • Mathematica
    RealDigits[Sum[1/(k^2+3),{k,0,\[Infinity]}],10,120][[1]] (* Harvey P. Dale, Jul 05 2021 *)
    RealDigits[(1 + Sqrt[3]*Pi*Coth[Sqrt[3]*Pi])/6, 10, 120][[1]] (* Amiram Eldar, Jun 17 2023 *)
  • PARI
    default(realprecision, 100); my(F(x) = (1 + (sqrt(x)*Pi)/tanh(sqrt(x)*Pi))/(2*x)); F(3)
    
  • PARI
    sumnumrat(1/(x^2+3), 0) \\ Charles R Greathouse IV, Jan 20 2022

Formula

Equals (1 + (sqrt(3)*Pi)*coth(sqrt(3)*Pi))/6 = (1 + (sqrt(-3)*Pi)*cot(sqrt(-3)*Pi))/6.

A329085 Decimal expansion of Sum_{k>=0} 1/(k^2+4).

Original entry on oeis.org

9, 1, 0, 4, 0, 3, 6, 4, 1, 3, 2, 1, 1, 1, 5, 1, 1, 4, 1, 9, 3, 0, 4, 3, 8, 2, 4, 9, 2, 6, 4, 4, 3, 6, 0, 9, 6, 1, 1, 6, 9, 5, 0, 6, 5, 7, 9, 4, 6, 5, 0, 4, 4, 8, 9, 0, 2, 5, 8, 5, 8, 8, 0, 4, 5, 3, 5, 8, 0, 8, 3, 1, 1, 4, 9, 4, 5, 5, 2, 0, 6, 2, 5, 2, 8, 4, 5, 3, 1, 7, 8
Offset: 0

Views

Author

Jianing Song, Nov 04 2019

Keywords

Comments

In general, for complex numbers z, if we define F(z) = Sum_{k>=0} 1/(k^2+z), f(z) = Sum_{k>=1} 1/(k^2+z), then we have:
F(z) = (1 + sqrt(z)*Pi*coth(sqrt(z)*Pi))/(2z), z != 0, -1, -4, -9, -16, ...;
f(z) = (-1 + sqrt(z)*Pi*coth(sqrt(z)*Pi))/(2z), z != 0, -1, -4, -9, -16, ...; Pi^2/6, z = 0. Note that f(z) is continuous at z = 0.
This sequence gives F(4).
This and A329092 are essentially the same, but both sequences are added because some people may search for this, and some people may search for A329092.

Examples

			0.91040364132111511419...
		

Crossrefs

Cf. A329080 (F(-5)), A329081 (F(-3)), A329082 (F(-2)), A113319 (F(1)), A329083 (F(2)), A329084 (F(3)), this sequence (F(4)), A329086 (F(5)).
Cf. A329087 (f(-5)), A329088 (f(-3)), A329089 (f(-2)), A013661 (f(0)), A259171 (f(1)), A329090 (f(2)), A329091 (f(3)), A329092 (f(4)), A329093 (f(5)).

Programs

  • Mathematica
    RealDigits[(1 + 2*Pi*Coth[2*Pi])/8, 10, 120][[1]] (* Amiram Eldar, Jun 17 2023 *)
  • PARI
    default(realprecision, 100); my(F(x) = (1 + (sqrt(x)*Pi)/tanh(sqrt(x)*Pi))/(2*x)); F(4)
    
  • PARI
    sumnumrat(1/(x^2+4), 0) \\ Charles R Greathouse IV, Jan 20 2022

Formula

Equals (1 + (2*Pi)*coth(2*Pi))/8 = (1 + (2*Pi*i)*cot(2*Pi*i))/8, i = sqrt(-1).

A329080 Decimal expansion of Sum_{k>=0} 1/(k^2-5), negated.

Original entry on oeis.org

8, 6, 6, 8, 3, 2, 5, 9, 5, 6, 6, 2, 7, 4, 4, 8, 5, 2, 9, 8, 2, 9, 6, 3, 3, 3, 9, 7, 6, 6, 9, 6, 8, 1, 5, 7, 5, 4, 3, 4, 3, 2, 5, 6, 6, 2, 3, 8, 0, 3, 9, 6, 4, 0, 4, 0, 5, 8, 3, 3, 4, 5, 8, 2, 7, 1, 4, 8, 6, 8, 3, 3, 7, 2, 8, 9, 9, 0, 6, 0, 3, 4, 3, 6, 8, 6, 0, 4, 9, 2, 1
Offset: 0

Views

Author

Jianing Song, Nov 04 2019

Keywords

Comments

In general, for complex numbers z, if we define F(z) = Sum_{k>=0} 1/(k^2+z), f(z) = Sum_{k>=1} 1/(k^2+z), then we have:
F(z) = (1 + sqrt(z)*Pi*coth(sqrt(z)*Pi))/(2z), z != 0, -1, -4, -9, -16, ...;
f(z) = (-1 + sqrt(z)*Pi*coth(sqrt(z)*Pi))/(2z), z != 0, -1, -4, -9, -16, ...; Pi^2/6, z = 0. Note that f(z) is continuous at z = 0.
This sequence gives F(-5) (negated).
This and A329087 are essentially the same, but both sequences are added because some people may search for this, and some people may search for A329087.

Examples

			-0.86683259566274485298...
		

Crossrefs

Cf. this sequence (F(-5)), A329081 (F(-3)), A329082 (F(-2)), A113319 (F(1)), A329083 (F(2)), A329084 (F(3)), A329085 (F(4)), A329086 (F(5)).
Cf. A329087 (f(-5)), A329088 (f(-3)), A329089 (f(-2)), A013661 (f(0)), A259171 (f(1)), A329090 (f(2)), A329091 (f(3)), A329092 (f(4)), A329093 (f(5)).

Programs

  • Mathematica
    RealDigits[(1 + Sqrt[5]*Pi*Cot[Sqrt[5]*Pi])/10, 10, 120][[1]] (* Amiram Eldar, Jun 17 2023 *)
  • PARI
    default(realprecision, 100); my(F(x) = (1 + (sqrt(x)*Pi)/tanh(sqrt(x)*Pi))/(2*x)); F(-5)
    
  • PARI
    sumnumrat(1/(x^2-5), 0) \\ Charles R Greathouse IV, Jan 20 2022

Formula

Equals (1 + (sqrt(-5)*Pi)*coth(sqrt(-5)*Pi))/(-10).
Equals (1 + (sqrt(5)*Pi)*cot(sqrt(5)*Pi))/(-10).

A329081 Decimal expansion of Sum_{k>=0} 1/(k^2-3).

Original entry on oeis.org

6, 4, 3, 3, 1, 6, 8, 5, 6, 6, 5, 2, 7, 6, 0, 2, 8, 3, 7, 7, 2, 5, 1, 5, 7, 2, 1, 8, 0, 8, 3, 8, 2, 9, 2, 9, 1, 0, 9, 7, 2, 6, 0, 7, 8, 1, 1, 2, 1, 8, 3, 5, 8, 6, 0, 5, 3, 6, 3, 2, 8, 4, 3, 3, 0, 1, 8, 8, 3, 1, 8, 4, 9, 5, 8, 3, 9, 6, 0, 3, 6, 9, 2, 6, 1, 4, 7, 1, 1, 8, 8
Offset: 0

Views

Author

Jianing Song, Nov 04 2019

Keywords

Comments

In general, for complex numbers z, if we define F(z) = Sum_{k>=0} 1/(k^2+z), f(z) = Sum_{k>=1} 1/(k^2+z), then we have:
F(z) = (1 + sqrt(z)*Pi*coth(sqrt(z)*Pi))/(2z), z != 0, -1, -4, -9, -16, ...;
f(z) = (-1 + sqrt(z)*Pi*coth(sqrt(z)*Pi))/(2z), z != 0, -1, -4, -9, -16, ...; Pi^2/6, z = 0. Note that f(z) is continuous at z = 0.
This sequence gives F(-3).

Examples

			0.64331685665276028377...
		

Crossrefs

Cf. A329080 (F(-5)), this sequence (F(-3)), A329082 (F(-2)), A113319 (F(1)), A329083 (F(2)), A329084 (F(3)), A329085 (F(4)), A329086 (F(5)).
Cf. A329087 (f(-5)), A329088 (f(-3)), A329089 (f(-2)), A013661 (f(0)), A259171 (f(1)), A329090 (f(2)), A329091 (f(3)), A329092 (f(4)), A329093 (f(5)).

Programs

  • Mathematica
    RealDigits[(1 + Sqrt[3]*Pi*Cot[Sqrt[3]*Pi])/6, 10, 120][[1]] (* Amiram Eldar, Jun 17 2023 *)
  • PARI
    default(realprecision, 100); my(F(x) = (1 + (sqrt(x)*Pi)/tanh(sqrt(x)*Pi))/(2*x)); F(-3)
    
  • PARI
    sumnumrat(1/(x^2-3), 0) \\ Charles R Greathouse IV, Jan 20 2022

Formula

Equals (1 + (sqrt(-3)*Pi)*coth(sqrt(-3)*Pi))/(-6) = (1 + (sqrt(3)*Pi)*cot(sqrt(3)*Pi))/(-6).

A329082 Decimal expansion of Sum_{k>=0} 1/(k^2-2), negated.

Original entry on oeis.org

5, 5, 6, 8, 1, 0, 4, 0, 7, 7, 0, 0, 6, 2, 0, 0, 8, 2, 5, 5, 2, 9, 8, 1, 6, 0, 9, 1, 1, 2, 5, 9, 7, 3, 4, 7, 0, 9, 8, 7, 0, 9, 2, 7, 0, 2, 5, 7, 0, 4, 0, 8, 7, 8, 5, 5, 1, 0, 0, 1, 9, 8, 3, 4, 8, 6, 3, 2, 8, 1, 0, 3, 7, 4, 4, 1, 5, 7, 0, 0, 2, 4, 6, 1, 7, 4, 5, 6, 5, 7, 7
Offset: 0

Views

Author

Jianing Song, Nov 04 2019

Keywords

Comments

In general, for complex numbers z, if we define F(z) = Sum_{k>=0} 1/(k^2+z), f(z) = Sum_{k>=1} 1/(k^2+z), then we have:
F(z) = (1 + sqrt(z)*Pi*coth(sqrt(z)*Pi))/(2z), z != 0, -1, -4, -9, -16, ...;
f(z) = (-1 + sqrt(z)*Pi*coth(sqrt(z)*Pi))/(2z), z != 0, -1, -4, -9, -16, ...; Pi^2/6, z = 0. Note that f(z) is continuous at z = 0.
This sequence gives F(-2) (negated).
This and A329089 are essentially the same, but both sequences are added because some people may search for this, and some people may search for A329089.

Examples

			-0.55681040770062008255...
		

Crossrefs

Cf. A329080 (F(-5)), A329081 (F(-3)), this sequence (F(-2)), A113319 (F(1)), A329083 (F(2)), A329084 (F(3)), A329085 (F(4)), A329086 (F(5)).
Cf. A329087 (f(-5)), A329088 (f(-3)), A329089 (f(-2)), A013661 (f(0)), A259171 (f(1)), A329090 (f(2)), A329091 (f(3)), A329092 (f(4)), A329093 (f(5)).

Programs

  • Mathematica
    RealDigits[(1 + Sqrt[2]*Pi*Cot[Sqrt[2]*Pi])/4, 10, 120][[1]] (* Amiram Eldar, Jun 17 2023 *)
  • PARI
    default(realprecision, 100); my(F(x) = (1 + (sqrt(x)*Pi)/tanh(sqrt(x)*Pi))/(2*x)); F(-2)
    
  • PARI
    sumnumrat(1/(x^2-2), 0) \\ Charles R Greathouse IV, Jan 20 2022

Formula

Equals (1 + (sqrt(-2)*Pi)*coth(sqrt(-2)*Pi))/(-4) = (1 + (sqrt(2)*Pi)*cot(sqrt(2)*Pi))/(-4).

A329086 Decimal expansion of Sum_{k>=0} 1/(k^2+5).

Original entry on oeis.org

8, 0, 2, 4, 8, 2, 5, 8, 4, 8, 0, 6, 7, 8, 6, 8, 8, 6, 8, 3, 5, 8, 4, 4, 9, 5, 4, 4, 8, 6, 5, 5, 7, 7, 0, 9, 4, 0, 7, 1, 6, 0, 7, 2, 9, 7, 9, 0, 5, 7, 0, 1, 3, 6, 4, 1, 9, 8, 5, 9, 5, 9, 3, 9, 6, 0, 9, 4, 0, 1, 4, 9, 5, 4, 0, 5, 3, 4, 0, 8, 0, 4, 5, 5, 2, 9, 1, 0, 9, 3, 9
Offset: 0

Views

Author

Jianing Song, Nov 04 2019

Keywords

Comments

In general, for complex numbers z, if we define F(z) = Sum_{k>=0} 1/(k^2+z), f(z) = Sum_{k>=1} 1/(k^2+z), then we have:
F(z) = (1 + sqrt(z)*Pi*coth(sqrt(z)*Pi))/(2z), z != 0, -1, -4, -9, -16, ...;
f(z) = (-1 + sqrt(z)*Pi*coth(sqrt(z)*Pi))/(2z), z != 0, -1, -4, -9, -16, ...; Pi^2/6, z = 0. Note that f(z) is continuous at z = 0.
This sequence gives F(5).
This and A329093 are essentially the same, but both sequences are added because some people may search for this, and some people may search for A329093.

Examples

			Sum_{k>=0} 1/(k^2+5) = 0.80248258480678688683...
		

Crossrefs

Cf. A329080 (F(-5)), A329081 (F(-3)), A329082 (F(-2)), A113319 (F(1)), A329083 (F(2)), A329084 (F(3)), A329085 (F(4)), this sequence (F(5)).
Cf. A329087 (f(-5)), A329088 (f(-3)), A329089 (f(-2)), A013661 (f(0)), A259171 (f(1)), A329090 (f(2)), A329091 (f(3)), A329092 (f(4)), A329093 (f(5)).

Programs

  • Mathematica
    RealDigits[(1 + Sqrt[5]*Pi*Coth[Sqrt[5]*Pi])/10, 10, 120][[1]] (* Amiram Eldar, Jun 15 2023 *)
  • PARI
    default(realprecision, 100); my(F(x) = (1 + (sqrt(x)*Pi)/tanh(sqrt(x)*Pi))/(2*x)); F(5)
    
  • PARI
    sumnumrat(1/(x^2+5), 0) \\ Charles R Greathouse IV, Jan 20 2022

Formula

Sum_{k>=0} 1/(k^2+5) = (1 + (sqrt(5)*Pi)*coth(sqrt(5)*Pi))/10 = (1 + (sqrt(-5)*Pi)*cot(sqrt(-5)*Pi))/10.

A329087 Decimal expansion of Sum_{k>=1} 1/(k^2-5), negated.

Original entry on oeis.org

6, 6, 6, 8, 3, 2, 5, 9, 5, 6, 6, 2, 7, 4, 4, 8, 5, 2, 9, 8, 2, 9, 6, 3, 3, 3, 9, 7, 6, 6, 9, 6, 8, 1, 5, 7, 5, 4, 3, 4, 3, 2, 5, 6, 6, 2, 3, 8, 0, 3, 9, 6, 4, 0, 4, 0, 5, 8, 3, 3, 4, 5, 8, 2, 7, 1, 4, 8, 6, 8, 3, 3, 7, 2, 8, 9, 9, 0, 6, 0, 3, 4, 3, 6, 8, 6, 0, 4, 9, 2, 1
Offset: 0

Views

Author

Jianing Song, Nov 04 2019

Keywords

Comments

In general, for complex numbers z, if we define F(z) = Sum_{k>=0} 1/(k^2+z), f(z) = Sum_{k>=1} 1/(k^2+z), then we have:
F(z) = (1 + sqrt(z)*Pi*coth(sqrt(z)*Pi))/(2z), z != 0, -1, -4, -9, -16, ...;
f(z) = (-1 + sqrt(z)*Pi*coth(sqrt(z)*Pi))/(2z), z != 0, -1, -4, -9, -16, ...; Pi^2/6, z = 0. Note that f(z) is continuous at z = 0.
This sequence gives f(-5) (negated).
This and A329080 are essentially the same, but both sequences are added because some people may search for this, and some people may search for A329080.

Examples

			Sum_{k>=1} 1/(k^2-5) = -0.66683259566274485298...
		

Crossrefs

Cf. A329080 (F(-5)), A329081 (F(-3)), A329082 (F(-2)), A113319 (F(1)), A329083 (F(2)), A329084 (F(3)), A329085 (F(4)), A329086 (F(5)).
Cf. this sequence (f(-5)), A329088 (f(-3)), A329089 (f(-2)), A013661 (f(0)), A259171 (f(1)), A329090 (f(2)), A329091 (f(3)), A329092 (f(4)), A329093 (f(5)).

Programs

  • Mathematica
    RealDigits[(1 - Sqrt[5]*Pi*Cot[Sqrt[5]*Pi])/10, 10, 120][[1]] (* Amiram Eldar, Jun 15 2023 *)
  • PARI
    default(realprecision, 100); my(f(x) = (-1 + (sqrt(x)*Pi)/tanh(sqrt(x)*Pi))/(2*x)); f(-5)
    
  • PARI
    sumnumrat(1/(x^2-5), 1) \\ Charles R Greathouse IV, Jan 20 2022

Formula

Sum_{k>=1} 1/(k^2-5) = (-1 + (sqrt(-5)*Pi)*coth(sqrt(-5)*Pi))/(-10) = (-1 + (sqrt(5)*Pi)*cot(sqrt(5)*Pi))/(-10).
Showing 1-10 of 19 results. Next