A259201 Number of partitions of n into ten primes.
1, 1, 1, 2, 2, 3, 4, 4, 5, 7, 8, 9, 11, 11, 14, 16, 18, 20, 25, 24, 31, 33, 38, 39, 48, 47, 59, 59, 69, 69, 87, 80, 102, 98, 118, 114, 143, 131, 168, 154, 191, 179, 227, 200, 261, 236, 297, 268, 344, 300, 396, 345, 442, 390, 509, 431, 576, 493, 641, 551, 729
Offset: 20
Examples
a(23) = 2 because there are 2 partitions of 23 into ten primes: [2,2,2,2,2,2,2,2,2,5] and [2,2,2,2,2,2,2,3,3,3].
Links
Crossrefs
Programs
-
Magma
[#RestrictedPartitions(k,10,Set(PrimesUpTo(1000))):k in [20..80]] ; // Marius A. Burtea, Jul 13 2019
Formula
a(n) = [x^n y^10] Product_{k>=1} 1/(1 - y*x^prime(k)). - Ilya Gutkovskiy, Apr 18 2019
a(n) = Sum_{r=1..floor(n/10)} Sum_{q=r..floor((n-r)/9)} Sum_{p=q..floor((n-q-r)/8)} Sum_{o=p..floor((n-p-q-r)/7)} Sum_{m=o..floor((n-o-p-q-r)/6)} Sum_{l=m..floor((n-m-o-p-q-r)/5)} Sum_{k=l..floor((n-l-m-o-p-q-r)/4)} Sum_{j=k..floor((n-k-l-m-o-p-q-r)/3)} Sum_{i=j..floor((n-j-k-l-m-o-p-q-r)/2)} A010051(r) * A010051(q) * A010051(p) * A010051(o) * A010051(m) * A010051(l) * A010051(k) * A010051(j) * A010051(i) * A010051(n-i-j-k-l-m-o-p-q-r). - Wesley Ivan Hurt, Jul 13 2019