A259208 E.g.f.: Sum_{n>=0} x^n * (1 + x^n)^n / n!.
1, 1, 3, 1, 25, 1, 721, 1, 6721, 181441, 151201, 1, 203575681, 1, 121080961, 108972864001, 3491282995201, 1, 133541574566401, 1, 304119455447808001, 212878925715456001, 309744468633601, 1, 17665560315112008499201, 646300418472124416000001, 841941782922240001
Offset: 0
Keywords
Examples
E.g.f.: A(x) = 1 + x + 3*x^2/2! + x^3/3! + 25*x^4/4! + x^5/5! + 721*x^6/6! + x^7/7! + 6721*x^8/8! + 181441*x^9/9! +... where A(x) = 1 + x*(1+x) + x^2*(1+x^2)^2/2! + x^3*(1+x^3)^3/3! + x^4*(1+x^4)^4/4! + x^5*(1+x^5)^5/5! + x^6*(1+x^6)^6/6! +... also A(x) = exp(x) + x^2*exp(x^2) + x^6*exp(x^3)/2! + x^12*exp(x^4)/3! + x^20*exp(x^5)/4! + x^30*exp(x^6)/5! + x^42*exp(x^7)/6! +... RELATED SERIES. Below we illustrate the following identity at specific values of x: Sum_{n>=0} x^n * (1 + x^n)^n / n! = Sum_{n>=0} x^(n*(n+1)) * exp(x^(n+1)) / n!. (1) At x = 1/2, the following sums are equal S1 = Sum_{n>=0} 2^(-n*(n+1)) * (2^n + 1)^n / n!, S1 = Sum_{n>=0} 2^(-n*(n+1)) * exp( 1/2^(n+1) ) / n!, where S1 = 1.97862370255774939923047215233920359461142155926360261512472... (2) At x = 1/3, the following sums are equal S2 = Sum_{n>=0} 3^(-n*(n+1)) * (3^n + 1)^n / n!, S2 = Sum_{n>=0} 3^(-n*(n+1)) * exp( 1/3^(n+1) ) / n!, where S2 = 1.52049327799122758174016893855657751957768595647287750170026...
Links
- Paul D. Hanna, Table of n, a(n) for n = 0..1025
Crossrefs
Cf. A326096.
Programs
-
PARI
{a(n) = local(A=1); A = sum(m=0, n, x^m/m!*(1 + x^m +x*O(x^n))^m); n!*polcoeff(A, n)} for(n=0, 30, print1(a(n), ", "))
-
PARI
{a(n) = local(A=1); A = sum(m=0, n, x^(m*(m+1)) / m! * exp(x^(m+1) +x*O(x^n))); n!*polcoeff(A, n)} for(n=0, 30, print1(a(n), ", "))
-
PARI
{a(n) = if(n==0,1, sumdiv(n,d, binomial(d, n/d-1) * n!/d! ) )} for(n=0, 30, print1(a(n), ", "))
Formula
E.g.f.: Sum_{n>=0} x^(n*(n+1)) * exp(x^(n+1)) / n!.
a(n) = Sum_{d|n} binomial(d, n/d - 1) * n!/d!.
Comments