cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-2 of 2 results.

A259320 a(n) = 2*n*A259319(n) - A259110(n)^2.

Original entry on oeis.org

0, 256, 3584, 21504, 84480, 256256, 652288, 1462272, 2976768, 5617920, 9974272, 16839680, 27256320, 42561792, 64440320, 94978048, 136722432, 192745728, 266712576, 362951680, 486531584, 643340544, 840170496, 1084805120, 1386112000, 1754138880, 2200214016
Offset: 1

Views

Author

N. J. A. Sloane, Jun 24 2015

Keywords

Examples

			n=3: 3584 = 6*1414 - 70^2.
		

Crossrefs

Programs

  • Mathematica
    LinearRecurrence[{7,-21,35,-35,21,-7,1},{0,256,3584,21504,84480,256256,652288},40] (* Harvey P. Dale, Mar 01 2020 *)
  • PARI
    concat(0, Vec(-256*x^2*(x+1)*(x^2+6*x+1)/(x-1)^7 + O(x^100))) \\ Colin Barker, Jun 29 2015

Formula

a(n) = (64*(n^2-5*n^4+4*n^6))/45. - Colin Barker, Jun 29 2015
G.f.: -256*x^2*(x+1)*(x^2+6*x+1) / (x-1)^7. - Colin Barker, Jun 29 2015

A259321 a(n) = A259110(n)*A259323(n) - A259319(n)^2.

Original entry on oeis.org

0, 2304, 290304, 6386688, 65235456, 424030464, 2038772736, 7894388736, 25960393728, 75123949824, 196144058880, 470584857600, 1051840857600, 2213790808320, 4424337967104, 8453141250048, 15525242320896, 27535076464896, 47338548401664, 79144486327296
Offset: 1

Views

Author

N. J. A. Sloane, Jun 24 2015

Keywords

Examples

			n=3: 290304 = 70*32710 - 1414^2.
		

Crossrefs

Programs

  • Mathematica
    LinearRecurrence[{11, -55, 165, -330, 462, -462, 330, -165, 55, -11, 1}, {0, 2304, 290304, 6386688, 65235456, 424030464, 2038772736, 7894388736, 25960393728, 75123949824, 196144058880}, 30] (* Vincenzo Librandi, Jun 29 2015 *)
  • PARI
    concat(0, Vec(-2304*x^2*(x +1)*(x^6 +114*x^5 +1327*x^4 +3260*x^3 +1327*x^2 +114*x +1) / (x -1)^11 + O(x^100))) \\ Colin Barker, Jun 29 2015

Formula

a(n) = (4096*n^10-15360*n^8+16128*n^6-5440*n^4+576*n^2)/525. - Colin Barker, Jun 29 2015
G.f.: -2304*x^2*(x+1)*(x^6+114*x^5+1327*x^4+3260*x^3+1327*x^2+114*x+1) / (x-1)^11. - Colin Barker, Jun 29 2015
Showing 1-2 of 2 results.