A259401 a(n) = Sum_{k=0..n} 2^(n-k)*p(k), where p(k) is the partition function A000041.
1, 3, 8, 19, 43, 93, 197, 409, 840, 1710, 3462, 6980, 14037, 28175, 56485, 113146, 226523, 453343, 907071, 1814632, 3629891, 7260574, 14522150, 29045555, 58092685, 116187328, 232377092, 464757194, 929518106, 1859040777, 3718087158, 7436181158, 14872370665
Offset: 0
Keywords
Links
- Alois P. Heinz, Table of n, a(n) for n = 0..3320
Programs
-
Maple
a:= proc(n) option remember; `if`(n<0, 0, 2*a(n-1)+combinat[numbpart](n)) end: seq(a(n), n=0..32); # Alois P. Heinz, Dec 03 2019
-
Mathematica
Table[Sum[2^(n-k)*PartitionsP[k],{k,0,n}],{n,0,50}]
-
PARI
a(n) = sum(k=0, n, 2^(n-k)*numbpart(k)); \\ Michel Marcus, Dec 03 2019
Formula
a(n) ~ c * 2^n, where c = 1/A048651 = 1/QPochhammer[1/2, 1/2] = 3.462746619455...
G.f.: (1/(1 - 2*x)) * Product_{k>=1} 1/(1 - x^k). - Ilya Gutkovskiy, Dec 03 2019
Comments