cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A259401 a(n) = Sum_{k=0..n} 2^(n-k)*p(k), where p(k) is the partition function A000041.

Original entry on oeis.org

1, 3, 8, 19, 43, 93, 197, 409, 840, 1710, 3462, 6980, 14037, 28175, 56485, 113146, 226523, 453343, 907071, 1814632, 3629891, 7260574, 14522150, 29045555, 58092685, 116187328, 232377092, 464757194, 929518106, 1859040777, 3718087158, 7436181158, 14872370665
Offset: 0

Views

Author

Vaclav Kotesovec, Jun 26 2015

Keywords

Comments

In general, Sum_{k=0..n} (m^(n-k) * p(k)) ~ m^n / QPochhammer[1/m, 1/m], for m > 1.

Crossrefs

Programs

  • Maple
    a:= proc(n) option remember; `if`(n<0, 0,
          2*a(n-1)+combinat[numbpart](n))
        end:
    seq(a(n), n=0..32);  # Alois P. Heinz, Dec 03 2019
  • Mathematica
    Table[Sum[2^(n-k)*PartitionsP[k],{k,0,n}],{n,0,50}]
  • PARI
    a(n) = sum(k=0, n, 2^(n-k)*numbpart(k)); \\ Michel Marcus, Dec 03 2019

Formula

a(n) ~ c * 2^n, where c = 1/A048651 = 1/QPochhammer[1/2, 1/2] = 3.462746619455...
G.f.: (1/(1 - 2*x)) * Product_{k>=1} 1/(1 - x^k). - Ilya Gutkovskiy, Dec 03 2019