cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-2 of 2 results.

A259411 Numbers n such that 1 - sigma(n) + sigma(n)^2 - sigma(n)^3 + sigma(n)^4 is prime.

Original entry on oeis.org

2, 6, 11, 19, 33, 35, 37, 47, 57, 68, 79, 81, 82, 88, 118, 121, 129, 145, 157, 162, 179, 217, 226, 241, 245, 257, 258, 260, 262, 289, 306, 332, 378, 393, 430, 434, 441, 461, 465, 466, 473, 474, 477, 483, 485, 490, 499, 504, 509, 512, 518, 526, 528, 533, 550
Offset: 1

Views

Author

Robert Price, Jun 26 2015

Keywords

Crossrefs

Programs

  • Magma
    [n: n in [1..600] | IsPrime(1 - DivisorSigma(1, n) + DivisorSigma(1, n)^2 - DivisorSigma(1, n)^3 + DivisorSigma(1, n)^4)]; // Vincenzo Librandi, Jun 27 2015
    
  • Maple
    with(numtheory): A259411:=n->`if`(isprime(1-sigma(n)+sigma(n)^2-sigma(n)^3+sigma(n)^4), n, NULL): seq(A259411(n), n=1..1000); # Wesley Ivan Hurt, Jul 09 2015
  • Mathematica
    Select[ Range[10000], PrimeQ[ 1 - DivisorSigma[1, #] + DivisorSigma[1, #]^2 - DivisorSigma[1, #]^3 + DivisorSigma[1, #]^4] & ]
    Select[ Range[10000], PrimeQ[ Cyclotomic[10, DivisorSigma[1, #]]] &]
  • PARI
    is(n)=my(s=sigma(n)); isprime(s^4-s^3+s^2-s+1) \\ Charles R Greathouse IV, May 22 2017

A259412 Primes of the form 1 - sigma(n) + sigma(n)^2 - sigma(n)^3 + sigma(n)^4.

Original entry on oeis.org

61, 19141, 19141, 152381, 5200081, 5200081, 2031671, 5200081, 40454321, 250062751, 40454321, 212601841, 250062751, 1043960221, 1043960221, 310565641, 954091601, 1043960221, 619281791, 17315368621, 1043960221, 4278255361, 13640692231, 3415627931, 13640692231
Offset: 1

Views

Author

Robert Price, Jun 26 2015

Keywords

Comments

These primes are neither sorted nor uniqued. They are listed in the order found in A259410.

Crossrefs

Programs

  • Magma
    [a: n in [1..300] | IsPrime(a) where a is (1 - SumOfDivisors(n) + SumOfDivisors(n)^2 - SumOfDivisors(n)^3 + SumOfDivisors(n)^4)]; // Vincenzo Librandi, Jun 27 2015
  • Maple
    with(numtheory): A259412:=n->`if`(isprime(1-sigma(n)+sigma(n)^2-sigma(n)^3+sigma(n)^4), 1-sigma(n)+sigma(n)^2-sigma(n)^3+sigma(n)^4, NULL): seq(A259412(n), n=1..500); # Wesley Ivan Hurt, Jun 27 2015
  • Mathematica
    Select[Table[1 - DivisorSigma[1, n] + DivisorSigma[1, n]^2 - DivisorSigma[1, n]^3 + DivisorSigma[1, n]^4, {n, 10000}], PrimeQ]
    Select[Table[Cyclotomic[10, DivisorSigma[1, n]], {n, 10000}], PrimeQ]
    Select[1-#+#^2-#^3+#^4&/@DivisorSigma[1,Range[300]],PrimeQ] (* Harvey P. Dale, Jul 07 2017 *)

Formula

a(n) = A259410(A259411(n)).
Showing 1-2 of 2 results.