cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A259412 Primes of the form 1 - sigma(n) + sigma(n)^2 - sigma(n)^3 + sigma(n)^4.

Original entry on oeis.org

61, 19141, 19141, 152381, 5200081, 5200081, 2031671, 5200081, 40454321, 250062751, 40454321, 212601841, 250062751, 1043960221, 1043960221, 310565641, 954091601, 1043960221, 619281791, 17315368621, 1043960221, 4278255361, 13640692231, 3415627931, 13640692231
Offset: 1

Views

Author

Robert Price, Jun 26 2015

Keywords

Comments

These primes are neither sorted nor uniqued. They are listed in the order found in A259410.

Crossrefs

Programs

  • Magma
    [a: n in [1..300] | IsPrime(a) where a is (1 - SumOfDivisors(n) + SumOfDivisors(n)^2 - SumOfDivisors(n)^3 + SumOfDivisors(n)^4)]; // Vincenzo Librandi, Jun 27 2015
  • Maple
    with(numtheory): A259412:=n->`if`(isprime(1-sigma(n)+sigma(n)^2-sigma(n)^3+sigma(n)^4), 1-sigma(n)+sigma(n)^2-sigma(n)^3+sigma(n)^4, NULL): seq(A259412(n), n=1..500); # Wesley Ivan Hurt, Jun 27 2015
  • Mathematica
    Select[Table[1 - DivisorSigma[1, n] + DivisorSigma[1, n]^2 - DivisorSigma[1, n]^3 + DivisorSigma[1, n]^4, {n, 10000}], PrimeQ]
    Select[Table[Cyclotomic[10, DivisorSigma[1, n]], {n, 10000}], PrimeQ]
    Select[1-#+#^2-#^3+#^4&/@DivisorSigma[1,Range[300]],PrimeQ] (* Harvey P. Dale, Jul 07 2017 *)

Formula

a(n) = A259410(A259411(n)).