cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-5 of 5 results.

A257711 Triangular numbers (A000217) that are the sum of seven consecutive triangular numbers.

Original entry on oeis.org

210, 3486, 51681, 883785, 13125126, 224476266, 3333728685, 57016086141, 846753959226, 14481861401910, 215072171913081, 3678335779997361, 54627484911961710, 934282806257926146, 13875166095466359621, 237304154453733242085, 3524237560763543380386
Offset: 1

Views

Author

Colin Barker, May 05 2015

Keywords

Examples

			210 is in the sequence because T(20) = 210 = 10+15+21+28+36+45+55 = T(4)+ ... +T(10).
		

Crossrefs

Programs

  • Mathematica
    LinearRecurrence[{1, 254, -254, -1, 1}, {210, 3486, 51681, 883785, 13125126}, 30] (* Vincenzo Librandi, Jun 27 2015 *)
  • PARI
    Vec(-21*x*(x^4-245*x^2+156*x+10) / ((x-1)*(x^2-16*x+1)*(x^2+16*x+1)) + O(x^100))

Formula

G.f.: -21*x*(x^4-245*x^2+156*x+10) / ((x-1)*(x^2-16*x+1)*(x^2+16*x+1)).
16*a(n) = 104 +225*A157456(n+1) +7*(-1)^n*A159678(n+1). - R. J. Mathar, Apr 28 2020

A257712 Triangular numbers (A000217) that are the sum of eight consecutive triangular numbers.

Original entry on oeis.org

120, 276, 1176, 28920, 126756, 306936, 1345620, 33362196, 146264856, 354192420, 1552832856, 38499933816, 168789505620, 408737734296, 1791967758756, 44428890250020, 194782943209176, 471682991173716, 2067929240760120, 51270900848577816, 224779347673872036
Offset: 1

Views

Author

Colin Barker, May 05 2015

Keywords

Examples

			120 is in the sequence because T(15) = 120 = 1+3+6+10+15+21+28+36 = T(1)+ ... +T(8).
		

Crossrefs

Programs

  • Mathematica
    LinearRecurrence[{1, 0, 0, 1154, -1154, 0, 0, -1, 1}, {120, 276, 1176, 28920, 126756, 306936, 1345620, 33362196, 146264856}, 30] (* Vincenzo Librandi, Jun 27 2015 *)
    Select[Total/@Partition[Accumulate[Range[5*10^6]],8,1],OddQ[ Sqrt[ 1+8#]]&] (* The program generates the first 16 terms of the sequence *) (* Harvey P. Dale, Feb 27 2022 *)
  • PARI
    Vec(-12*x*(3*x^8+7*x^6+13*x^5-3387*x^4+2312*x^3+75*x^2+13*x+10) / ((x-1)*(x^2-6*x+1)*(x^2+6*x+1)*(x^4+34*x^2+1)) + O(x^100))

Formula

G.f.: -12*x*(3*x^8+7*x^6+13*x^5-3387*x^4+2312*x^3+75*x^2+13*x+10) / ((x-1)*(x^2-6*x+1)*(x^2+6*x+1)*(x^4+34*x^2+1)).

A257713 Triangular numbers (A000217) that are the sum of ten consecutive triangular numbers.

Original entry on oeis.org

1485, 7260, 28920, 142845, 2112540, 10440165, 41673885, 205953660, 3046252485, 15054681960, 60093684540, 296985006165, 4392693942120, 21708840917445, 86655051404085, 428252172907560, 6334261618255845, 31304133548245020, 124956524030977320, 617539336347666645
Offset: 1

Views

Author

Colin Barker, May 05 2015

Keywords

Examples

			1485 is in the sequence because T(54) = 1485 = 78+91+105+120+136+153+171+190+210+231 = T(12)+ ... +T(21).
		

Crossrefs

Programs

  • Mathematica
     LinearRecurrence[{1, 0, 0, 1442, -1442, 0, 0, -1, 1}, {1485, 7260, 28920, 142845, 2112540, 10440165, 41673885, 205953660, 3046252485}, 30] (* Vincenzo Librandi, Jun 27 2015 *)
  • PARI
    Vec(-15*x*(8*x^8-5*x^7+5*x^5-11445*x^4+7595*x^3+1444*x^2+385*x+99) / ((x-1)*(x^2-6*x-1)*(x^2+6*x-1)*(x^4+38*x^2+1)) + O(x^100))

Formula

G.f.: -15*x*(8*x^8-5*x^7+5*x^5-11445*x^4+7595*x^3+1444*x^2+385*x+99) / ((x-1)*(x^2-6*x-1)*(x^2+6*x-1)*(x^4+38*x^2+1)).

A259413 Triangular numbers (A000217) that are the sum of eleven consecutive triangular numbers.

Original entry on oeis.org

2145, 3916, 7381, 13530, 843051, 1547920, 2926990, 5374281, 335521560, 616057651, 1164924046, 2138939715, 133536727236, 245189386585, 463636832725, 851292621696, 53147281907775, 97584759792586, 184526294489911, 338812324484700, 21152484662556621
Offset: 1

Views

Author

Colin Barker, Jun 26 2015

Keywords

Examples

			2145 is in the sequence because T(65) = 2145 = 105 + 120 + 136 + 153 + 171 + 190 + 210 + 231 + 253 + 276 + 300 = T(14) + ... + T(24).
		

Crossrefs

Programs

  • Mathematica
    LinearRecurrence[{1, 0, 0, 398, -398, 0, 0, -1, 1}, {2145, 3916, 7381, 13530, 843051, 1547920, 2926990, 5374281, 335521560}, 30] (* Vincenzo Librandi, Jun 27 2015 *)
  • PARI
    Vec(-11*x*(6*x^8-x^7+x^5-2199*x^4+559*x^3+315*x^2+161*x+195)/((x-1)*(x^4-20*x^2+1)*(x^4+20*x^2+1)) + O(x^30))

Formula

G.f.: -11*x*(6*x^8-x^7+x^5-2199*x^4+559*x^3+315*x^2+161*x+195) / ((x-1)*(x^4-20*x^2+1)*(x^4+20*x^2+1)).

A259415 Triangular numbers (A000217) that are the sum of seventeen consecutive triangular numbers.

Original entry on oeis.org

1326, 9180, 24531, 1979055, 5325216, 39529386, 106368405, 8616365901, 23185550130, 172110498456, 463127571831, 37515654714891, 100949879501796, 749369070309030, 2016457340944761, 163343152011830505, 439535752164830646, 3262752760014579156
Offset: 1

Views

Author

Colin Barker, Jun 26 2015

Keywords

Examples

			1326 is in the sequence because T(51) = 1326 = 6 + 10 + 15 + 21 + 28 + 36 + 45 + 55 + 66 + 78 + 91 + 105 + 120 + 136 + 153 + 171 + 190 = T(3) + ... + T(19).
		

Crossrefs

Programs

  • Mathematica
     LinearRecurrence[{1, 0, 0, 4354, -4354, 0, 0, -1, 1}, {1326, 9180, 24531, 1979055, 5325216, 39529386, 106368405, 8616365901, 23185550130}, 30] (* Vincenzo Librandi, Jun 27 2015 *)
    Module[{nn=10^6},Select[Total/@Partition[Accumulate[Range[nn]],17,1],OddQ[ Sqrt[8#+1]]&]] (* Harvey P. Dale, Mar 19 2023 *)
  • PARI
    Vec(-51*x*(11*x^8 +15*x^6 +154*x^5 -47593*x^4 +38324*x^3 +301*x^2 +154*x +26) / ((x -1)*(x^2 -8*x -1)*(x^2 +8*x -1)*(x^4 +66*x^2 +1)) + O(x^30))

Formula

G.f.: -51*x*(11*x^8 +15*x^6 +154*x^5 -47593*x^4 +38324*x^3 +301*x^2 +154*x +26) / ((x -1)*(x^2 -8*x -1)*(x^2 +8*x -1)*(x^4 +66*x^2 +1)).
Showing 1-5 of 5 results.