cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A259417 Even powers of the odd primes listed in increasing order.

Original entry on oeis.org

1, 9, 25, 49, 81, 121, 169, 289, 361, 529, 625, 729, 841, 961, 1369, 1681, 1849, 2209, 2401, 2809, 3481, 3721, 4489, 5041, 5329, 6241, 6561, 6889, 7921, 9409, 10201, 10609, 11449, 11881, 12769, 14641, 15625, 16129, 17161, 18769, 19321, 22201, 22801, 24649
Offset: 1

Views

Author

Hartmut F. W. Hoft, Jun 26 2015

Keywords

Comments

Each of the following sequences, p^(q-1) with p >= 2 and q > 2 primes, except their respective first elements, powers of 2, is a subsequence:
A001248(p) = p^2, A030514(p) = p^4, A030516(p) = p^6,
A030629(p) = p^10, A030631(p) = p^12, A030635(p) = p^16,
A030637(p) = p^18, A137486(p) = p^22, A137492(p) = p^28,
A139571(p) = p^30, A139572(p) = p^36, A139573(p) = p^40,
A139574(p) = p^42, A139575(p) = p^46, A173533(p) = p^52,
A183062(p) = p^58, A183085(p) = p^60.
See also the link to the OEIS Wiki.
The sequences A053182(n)^2, A065509(n)^4, A163268(n)^6 and A240693(n)^10 are subsequences of this sequence.
The odd numbers in A023194 are a subsequence of this sequence.

Examples

			a(11) = 5^4 = 625 is followed by a(12) = 3^6 = 729 since no even power of an odd prime falls between them.
		

Programs

  • Mathematica
    a259417[bound_] := Module[{q, h, column = {}}, For[q = Prime[2], q^2 <= bound, q = NextPrime[q], For[h = 1, q^(2*h) <= bound, h++, AppendTo[column, q^(2*h)]]]; Prepend[Sort[column], 1]]
    a259417[25000] (* data *)
    With[{upto=25000},Select[Union[Flatten[Table[Prime[Range[2,Floor[ Sqrt[ upto]]]]^n,{n,0,Log[2,upto],2}]]],#<=upto&]] (* Harvey P. Dale, Nov 25 2017 *)

Formula

Sum_{n>=1} 1/a(n) = 1 + Sum_{k>=1} (P(2*k) - 1/2^(2*k)) = 1.21835996432366585110..., where P is the prime zeta function. - Amiram Eldar, Jul 10 2022