cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A259525 First differences of A007318, when Pascal's triangle is seen as flattened list.

Original entry on oeis.org

0, 0, 0, 1, -1, 0, 2, 0, -2, 0, 3, 2, -2, -3, 0, 4, 5, 0, -5, -4, 0, 5, 9, 5, -5, -9, -5, 0, 6, 14, 14, 0, -14, -14, -6, 0, 7, 20, 28, 14, -14, -28, -20, -7, 0, 8, 27, 48, 42, 0, -42, -48, -27, -8, 0, 9, 35, 75, 90, 42, -42, -90, -75, -35, -9, 0, 10, 44, 110
Offset: 0

Views

Author

Reinhard Zumkeller, Jul 18 2015

Keywords

Comments

A214292 gives first differences per row in Pascal's triangle.

Crossrefs

Programs

  • Haskell
    a259525 n = a259525_list !! n
    a259525_list = zipWith (-) (tail pascal) pascal
                               where pascal = concat a007318_tabl
    
  • Magma
    [k eq n select 0 else (n-2*k-1)*Binomial(n,k+1)/(n-k): k in [0..n], n in [0..14]]; // G. C. Greubel, Apr 25 2024
    
  • Mathematica
    Table[If[k==n, 0, ((n-2*k-1)/(n-k))*Binomial[n,k+1]], {n,0,12}, {k,0, n}]//Flatten (* G. C. Greubel, Apr 25 2024 *)
  • SageMath
    flatten([[binomial(n,k+1) -binomial(n,k) +int(k==n) for k in range(n+1)] for n in range(15)]) # G. C. Greubel, Apr 25 2024

Formula

From G. C. Greubel, Apr 25 2024: (Start)
If viewed as a triangle then:
T(n, k) = binomial(n, k+1) - binomial(n, k), with T(n, n) = 0.
T(n, n-k) = - T(n, k), for 0 <= k < n.
T(2*n, n) = [n=0] - A000108(n).
Sum_{k=0..n} T(n, k) = 0 (row sums).
Sum_{k=0..floor(n/2)} T(n, k) = A047171(n).
Sum_{k=0..n} (-1)^k*T(n, k) = A021499(n).
Sum_{k=0..floor(n/2)} T(n-k, k) = A074331(n-1). (End)