cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-1 of 1 results.

A259547 a(n) = n^4*Fibonacci(n).

Original entry on oeis.org

0, 1, 16, 162, 768, 3125, 10368, 31213, 86016, 223074, 550000, 1303049, 2985984, 6654713, 14482832, 30881250, 64684032, 133383037, 271257984, 544872101, 1082400000, 2128789026, 4148908016, 8019403537, 15383789568, 29306640625, 55473687568, 104384578338
Offset: 0

Views

Author

Colin Barker, Jun 30 2015

Keywords

Crossrefs

Programs

  • Maple
    a:= n-> n^4*(<<1|1>, <1|0>>^n)[1, 2]:
    seq(a(n), n=0..50);  # Alois P. Heinz, Jun 30 2015
  • Mathematica
    Table[n^4 Fibonacci[n],{n,0,30}] (* or *) LinearRecurrence[{5,-5,-10,15,11,-15,-10,5,5,1},{0,1,16,162,768,3125,10368,31213,86016,223074},30] (* Harvey P. Dale, Mar 09 2016 *)
  • PARI
    a(n) = n^4*fibonacci(n)
    
  • PARI
    concat(0, Vec(-x*(x^8 -11*x^7 +87*x^6 -48*x^5 +240*x^4 +48*x^3 +87*x^2 +11*x +1)/(x^2 +x -1)^5 + O(x^50)))

Formula

G.f.: -x*(x^8-11*x^7+87*x^6-48*x^5+240*x^4+48*x^3+87*x^2+11*x+1) / (x^2+x-1)^5.
E.g.f.: exp(x/2)*x*(5*(1 + 7*x + 12*x^2 + 3*x^3)*cosh(sqrt(5)*x/2) + sqrt(5)*(1 + 21*x + 24*x^2 + 7*x^3)*sinh(sqrt(5)*x/2))/5. - Stefano Spezia, Aug 25 2024
Showing 1-1 of 1 results.