cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A259552 a(n) = (1/4)*n^4 - (1/2)*n^3 + (3/4)*n^2 - (1/2)*n + 41.

Original entry on oeis.org

41, 43, 53, 83, 151, 281, 503, 853, 1373, 2111, 3121, 4463, 6203, 8413, 11171, 14561, 18673, 23603, 29453, 36331, 44351, 53633, 64303, 76493, 90341, 105991, 123593, 143303, 165283, 189701, 216731, 246553, 279353, 315323, 354661, 397571, 444263, 494953
Offset: 1

Views

Author

Robert Potter, Jun 30 2015

Keywords

Comments

Empirical Observation: Reasonably productive (better than 85% in first 24 terms) prime-generating polynomial.
All integers generated by this polynomial for 0 < n <= 24 are prime with the exception of a(14) = 47*179, a(17) = 71*263, and a(20) = 47*773.
Negative and zero values of n also produce primes but they are not unique.
a(n) = (1/4)*n^4 - (1/2)*n^3 + (3/4)*n^2 - (1/2)*n + 809, for 0 < n <= 24, is also reasonably productive but produces composites at a(4), a(7), a(19) and a(20).
a(n) = (1/4)*n^4 - (1/2)*n^3 + (3/4)*n^2 - (1/2)*n + 641, for 0 < n <= 24, is also quite productive.

Crossrefs

Cf. A202018.

Programs

  • Magma
    [(1/4)*n^4-(1/2)*n^3+(3/4)*n^2-(1/2)*n+41: n in [1..40]]; // Vincenzo Librandi, Jul 03 2015
  • Maple
    A259552:=n->n^4/4-n^3/2+3*n^2/4-n/2+41: seq(A259552(n), n=1..100); # Wesley Ivan Hurt, Jul 09 2015
  • Mathematica
    f[n_] := n^4/4 - n^3/2 + 3 n^2/4 - n/2 + 41; Array[f, 38] (* or *)
    LinearRecurrence[{5, -10, 10, -5, 1}, {41, 43, 53, 83, 151}, 38] (* Robert G. Wilson v, Jul 07 2015 *)

Formula

G.f.: x*(41 - 162*x + 248*x^2 - 162*x^3 + 41*x^4)/(1-x)^5. - Vincenzo Librandi, Jul 03 2015
a(n) = 5*a(n-1)-10*a(n-2)+10*a(n-3)-5*a(n-4)+a(n-5), n>5. - Wesley Ivan Hurt, Jul 09 2015

Extensions

Corrected and extended by Vincenzo Librandi, Jul 03 2015