cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

User: Robert Potter

Robert Potter's wiki page.

Robert Potter has authored 4 sequences.

A259552 a(n) = (1/4)*n^4 - (1/2)*n^3 + (3/4)*n^2 - (1/2)*n + 41.

Original entry on oeis.org

41, 43, 53, 83, 151, 281, 503, 853, 1373, 2111, 3121, 4463, 6203, 8413, 11171, 14561, 18673, 23603, 29453, 36331, 44351, 53633, 64303, 76493, 90341, 105991, 123593, 143303, 165283, 189701, 216731, 246553, 279353, 315323, 354661, 397571, 444263, 494953
Offset: 1

Author

Robert Potter, Jun 30 2015

Keywords

Comments

Empirical Observation: Reasonably productive (better than 85% in first 24 terms) prime-generating polynomial.
All integers generated by this polynomial for 0 < n <= 24 are prime with the exception of a(14) = 47*179, a(17) = 71*263, and a(20) = 47*773.
Negative and zero values of n also produce primes but they are not unique.
a(n) = (1/4)*n^4 - (1/2)*n^3 + (3/4)*n^2 - (1/2)*n + 809, for 0 < n <= 24, is also reasonably productive but produces composites at a(4), a(7), a(19) and a(20).
a(n) = (1/4)*n^4 - (1/2)*n^3 + (3/4)*n^2 - (1/2)*n + 641, for 0 < n <= 24, is also quite productive.

Crossrefs

Cf. A202018.

Programs

  • Magma
    [(1/4)*n^4-(1/2)*n^3+(3/4)*n^2-(1/2)*n+41: n in [1..40]]; // Vincenzo Librandi, Jul 03 2015
  • Maple
    A259552:=n->n^4/4-n^3/2+3*n^2/4-n/2+41: seq(A259552(n), n=1..100); # Wesley Ivan Hurt, Jul 09 2015
  • Mathematica
    f[n_] := n^4/4 - n^3/2 + 3 n^2/4 - n/2 + 41; Array[f, 38] (* or *)
    LinearRecurrence[{5, -10, 10, -5, 1}, {41, 43, 53, 83, 151}, 38] (* Robert G. Wilson v, Jul 07 2015 *)

Formula

G.f.: x*(41 - 162*x + 248*x^2 - 162*x^3 + 41*x^4)/(1-x)^5. - Vincenzo Librandi, Jul 03 2015
a(n) = 5*a(n-1)-10*a(n-2)+10*a(n-3)-5*a(n-4)+a(n-5), n>5. - Wesley Ivan Hurt, Jul 09 2015

Extensions

Corrected and extended by Vincenzo Librandi, Jul 03 2015

A258841 a(n) = 9*n^2 - 237*n + 1927.

Original entry on oeis.org

1927, 1699, 1489, 1297, 1123, 967, 829, 709, 607, 523, 457, 409, 379, 367, 373, 397, 439, 499, 577, 673, 787, 919, 1069, 1237, 1423, 1627, 1849, 2089, 2347, 2623, 2917, 3229, 3559, 3907, 4273, 4657, 5059, 5479, 5917, 6373, 6847, 7339, 7849, 8377, 8923, 9487, 10069
Offset: 0

Author

Robert Potter, Jun 12 2015

Keywords

Comments

Empirical observation. All integers generated by polynomial for 0 < n <= 37 are prime with the exception of a(26) = 43^2 and a(29) = 43*61.

Crossrefs

Programs

  • Magma
    [9*n^2-237*n+1927: n in [0..50]]; // Vincenzo Librandi, Jun 22 2015
  • Mathematica
    Table[9 n^2 - 237 n + 1927, {n, 0, 25}] (* Michael De Vlieger, Jun 12 2015 *)
    LinearRecurrence[{3,-3,1},{1927,1699,1489},50] (* Harvey P. Dale, Oct 08 2024 *)
  • PARI
    vector(50, n, 9*n^2 - 237*n + 1927) \\ Michel Marcus, Jun 21 2015
    

Formula

From Vincenzo Librandi, Jun 22 2015: (Start)
G.f.: (1927 - 4082*x + 2173*x^2)/(1-x)^3.
a(n) = 3*a(n-1) - 3*a(n-2) + a(n-3). (End)
E.g.f.: exp(x)*(1927 - 228*x + 9*x^2). - Elmo R. Oliveira, Feb 09 2025

A215814 a(n) = 60516*n^2 - 61008*n + 2481403.

Original entry on oeis.org

2481403, 2480911, 2601451, 2843023, 3205627, 3689263, 4293931, 5019631, 5866363, 6834127, 7922923, 9132751, 10463611, 11915503, 13488427, 15182383, 16997371, 18933391, 20990443, 23168527, 25467643, 27887791, 30428971, 33091183, 35874427, 38778703, 41804011, 44950351
Offset: 0

Author

Robert Potter, Aug 28 2012

Keywords

Comments

The formula gives consecutive primes for n from 1 to 20, except n = 9.
This is the case m = 41*6 = 246 and k = 41 of the polynomial m^2*n^2 + (m^2 - 2*m)*n + (m^2*k) - (m-1).

Crossrefs

Cf. A214732.

Programs

Formula

G.f.: (2481403 - 4963298*x + 2602927*x^2)/(1-x)^3. - Bruno Berselli, Aug 28 2012
From Elmo R. Oliveira, Feb 09 2025: (Start)
E.g.f.: exp(x)*(2481403 - 492*x + 60516*x^2).
a(n) = 3*a(n-1) - 3*a(n-2) + a(n-3) for n > 2. (End)

Extensions

Offset changed from 1 to 0 and a(0) added from Vincenzo Librandi, Aug 29 2012
Gf adapted to the offset by Bruno Berselli, Aug 29 2012

A214732 a(n) = 25*n^2 + 15*n + 1021.

Original entry on oeis.org

1021, 1061, 1151, 1291, 1481, 1721, 2011, 2351, 2741, 3181, 3671, 4211, 4801, 5441, 6131, 6871, 7661, 8501, 9391, 10331, 11321, 12361, 13451, 14591, 15781, 17021, 18311, 19651, 21041, 22481, 23971, 25511, 27101, 28741, 30431, 32171, 33961, 35801, 37691
Offset: 0

Author

Robert Potter, Jul 27 2012

Keywords

Comments

This is the case m=5 and k=41 of the formula m^2*n^2 + (m^2 - 2*m)*n + (m^2*k) - (m-1). The most famous example is when m=1 and k=41 (Euler's generating polynomial). With k=41 the formula gives consecutive primes for m=10 and n=0..10, m=17 and n=0..10, m=86 and n=0..8. It is interesting to note that the sequences produced are all factors of the semiprimes produced by m=1, k=41. The other famous values to try for k are 5, 11 and 17 as these all produce primes up to k^2.

Crossrefs

Cf. A215814.

Programs

Formula

G.f.: (1021-2002*x+1031*x^2)/(1-x)^3. - Bruno Berselli, Aug 28 2012
E.g.f.: (1021 + 40*x + 25*x^2)*exp(x). - G. C. Greubel, Apr 26 2021