A214732 a(n) = 25*n^2 + 15*n + 1021.
1021, 1061, 1151, 1291, 1481, 1721, 2011, 2351, 2741, 3181, 3671, 4211, 4801, 5441, 6131, 6871, 7661, 8501, 9391, 10331, 11321, 12361, 13451, 14591, 15781, 17021, 18311, 19651, 21041, 22481, 23971, 25511, 27101, 28741, 30431, 32171, 33961, 35801, 37691
Offset: 0
Links
- Vincenzo Librandi, Table of n, a(n) for n = 0..1000
- Index entries for linear recurrences with constant coefficients, signature (3,-3,1).
Crossrefs
Cf. A215814.
Programs
-
Magma
[25*n^2+15*n+1021: n in [0..40]] // Vincenzo Librandi, Aug 29 2012
-
Maple
A214732:= n-> 25*n^2 +15*n +1021; seq(A214732(n), n=0..40); # G. C. Greubel, Apr 26 2021
-
Mathematica
Table[25n^2 +15n +1021, {n, 0, 40}] (* Vincenzo Librandi, Aug 29 2012 *) LinearRecurrence[{3,-3,1},{1021,1061,1151},40] (* Harvey P. Dale, May 31 2025 *)
-
PARI
a(n)=25*n^2+15*n+1021 \\ Charles R Greathouse IV, Oct 25 2012
-
Sage
[25*n^2 +15*n +1021 for n in (0..40)] # G. C. Greubel, Apr 26 2021
Formula
G.f.: (1021-2002*x+1031*x^2)/(1-x)^3. - Bruno Berselli, Aug 28 2012
E.g.f.: (1021 + 40*x + 25*x^2)*exp(x). - G. C. Greubel, Apr 26 2021
Comments