A259562 Numbers n such that the sum of the distinct prime factors of prime(n)-1 and prime(n+1)-1 are the same.
2, 414, 556, 3962, 4972, 6151, 6521, 8440, 8665, 13769, 13909, 15576, 16696, 17176, 19926, 20630, 21541, 27090, 30822, 62118, 65349, 74014, 94203, 98600, 101231, 103058, 108333, 112332, 136036, 142714, 145588, 147150, 160730, 162366, 169137, 194681, 200837
Offset: 1
Keywords
Examples
The prime factors of prime(414)-1 are 2,3,5,5,19 and the prime factors of prime(415)-1 are 2,2,2,3,7,17. The sum of the distinct entries in each of these lists is 29.
Programs
-
Maple
Primes:= select(isprime,[2,seq(2*i+1,i=1..10^6)]): spf:= map(p -> convert(numtheory:-factorset(p-1),`+`), Primes): select(t -> spf[t+1]=spf[t], [$1..nops(Primes)-1]);
-
Mathematica
Select[Range@ 250000, Total[First /@ FactorInteger[Prime@ # - 1]] == Total[First /@ FactorInteger[Prime[# + 1] - 1]] &] (* Michael De Vlieger, Jul 01 2015 *)
-
PARI
spf(n) = {my(f=factor(n)); sum(k=1, #f~, f[k,1]);} lista(nn) = {forprime(p=2, nn, if (spf(p-1)==spf(nextprime(p+1)-1), print1(primepi(p), ", ")););} \\ Michel Marcus, Jun 30 2015
Extensions
More terms from Alois P. Heinz, Jun 30 2015
Comments