cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-4 of 4 results.

A259616 Decimal expansion of J'_1(1), the first root of the derivative of the Bessel function J_1.

Original entry on oeis.org

1, 8, 4, 1, 1, 8, 3, 7, 8, 1, 3, 4, 0, 6, 5, 9, 3, 0, 2, 6, 4, 3, 6, 2, 9, 5, 1, 3, 6, 4, 4, 4, 4, 3, 3, 2, 2, 4, 3, 6, 1, 2, 7, 0, 3, 9, 0, 9, 6, 8, 1, 9, 2, 6, 4, 3, 5, 0, 4, 6, 7, 7, 4, 2, 9, 2, 4, 2, 2, 9, 2, 0, 9, 8, 5, 9, 0, 6, 5, 3, 8, 6, 1, 8, 9, 3, 3, 5, 4, 1, 7, 2, 0, 0, 9, 3, 7, 8, 4, 8, 4, 1, 1, 1, 4
Offset: 1

Views

Author

Jean-François Alcover, Jul 01 2015

Keywords

Comments

Also root of the equation J_0(x) = J_2(x). - Vaclav Kotesovec, Jul 01 2015

Examples

			1.8411837813406593026436295136444433224361270390968192643504677429242292...
		

Crossrefs

Cf. A115369 J'_0(1), A259617 J'_2(1), A259618 J'_3(1), A259619 J'_4(1), A259620 J'_5(1).

Programs

  • Mathematica
    FindRoot[D[BesselJ[1, x], x] == 0, {x, 2}, WorkingPrecision -> 105] // Last // Last // RealDigits // First

A259617 Decimal expansion of J'_2(1), the first root of the derivative of the Bessel function J_2.

Original entry on oeis.org

3, 0, 5, 4, 2, 3, 6, 9, 2, 8, 2, 2, 7, 1, 4, 0, 3, 2, 2, 7, 5, 5, 9, 3, 2, 0, 9, 1, 1, 4, 8, 5, 6, 0, 8, 9, 7, 6, 4, 1, 4, 9, 6, 7, 6, 0, 5, 2, 9, 9, 4, 5, 9, 1, 9, 8, 1, 6, 4, 3, 7, 5, 6, 6, 6, 5, 8, 5, 4, 5, 1, 7, 6, 6, 1, 2, 9, 1, 9, 4, 5, 6, 9, 7, 4, 7, 0, 8, 0, 5, 6, 3, 0, 5, 7, 7, 5, 5, 5, 0, 9, 4, 1, 2, 6
Offset: 1

Views

Author

Jean-François Alcover, Jul 01 2015

Keywords

Examples

			3.054236928227140322755932091148560897641496760529945919816437566658545...
		

Crossrefs

Cf. A115369 J'_0(1), A259616 J'_1(1), A259618 J'_3(1), A259619 J'_4(1), A259620 J'_5(1).

Programs

  • Mathematica
    FindRoot[D[BesselJ[2, x], x] == 0, {x, 3}, WorkingPrecision -> 105] // Last // Last // RealDigits // First

A259618 Decimal expansion of J'_3(1), the first root of the derivative of the Bessel function J_3.

Original entry on oeis.org

4, 2, 0, 1, 1, 8, 8, 9, 4, 1, 2, 1, 0, 5, 2, 8, 4, 9, 6, 1, 8, 7, 8, 5, 5, 2, 9, 7, 4, 5, 6, 7, 1, 2, 1, 8, 7, 9, 4, 4, 6, 0, 3, 2, 1, 3, 5, 8, 9, 9, 8, 3, 3, 5, 2, 1, 7, 6, 0, 0, 1, 7, 9, 1, 0, 2, 0, 9, 5, 8, 4, 0, 5, 0, 3, 1, 9, 3, 3, 5, 1, 6, 1, 1, 1, 7, 3, 5, 0, 2, 6, 5, 4, 2, 4, 7, 2, 1, 8, 9, 0, 7, 6, 9
Offset: 1

Views

Author

Jean-François Alcover, Jul 01 2015

Keywords

Examples

			4.2011889412105284961878552974567121879446032135899833521760017910209584...
		

Crossrefs

Cf. A115369 J'_0(1), A259616 J'_1(1), A259617 J'_2(1), A259619 J'_4(1), A259620 J'_5(1).

Programs

  • Mathematica
    FindRoot[D[BesselJ[3, x], x] == 0, {x, 4}, WorkingPrecision -> 104] // Last // Last // RealDigits // First

A259620 Decimal expansion of J'_5(1), the first root of the derivative of the Bessel function J_5.

Original entry on oeis.org

6, 4, 1, 5, 6, 1, 6, 3, 7, 5, 7, 0, 0, 2, 4, 0, 2, 8, 2, 8, 3, 9, 8, 1, 4, 7, 1, 9, 0, 8, 7, 9, 2, 4, 0, 3, 8, 1, 0, 9, 0, 0, 0, 5, 6, 5, 2, 0, 7, 7, 2, 0, 7, 7, 8, 6, 7, 4, 9, 4, 7, 6, 2, 7, 3, 2, 2, 8, 8, 0, 6, 0, 3, 3, 4, 7, 1, 6, 6, 5, 3, 2, 3, 2, 4, 6, 5, 3, 2, 0, 8, 6, 4, 6, 9, 9, 5, 6, 6, 8, 8, 0, 6, 7, 7
Offset: 1

Views

Author

Jean-François Alcover, Jul 01 2015

Keywords

Examples

			6.41561637570024028283981471908792403810900056520772077867494762732288...
		

Crossrefs

Cf. A115369 J'_0(1), A259616 J'_1(1), A259617 J'_2(1), A259618 J'_3(1), A259619 J'_4(1).

Programs

  • Mathematica
    FindRoot[D[BesselJ[5, x], x] == 0, {x, 6}, WorkingPrecision -> 105] // Last // Last // RealDigits // First
Showing 1-4 of 4 results.