A259624 Strictly increasing list of F - 1, F, and F + 1, where F = A000045, the Fibonacci numbers.
0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 12, 13, 14, 20, 21, 22, 33, 34, 35, 54, 55, 56, 88, 89, 90, 143, 144, 145, 232, 233, 234, 376, 377, 378, 609, 610, 611, 986, 987, 988, 1596, 1597, 1598, 2583, 2584, 2585, 4180, 4181, 4182, 6764, 6765, 6766, 10945, 10946, 10947
Offset: 1
Links
- Clark Kimberling, Table of n, a(n) for n = 1..2000
- Index entries for linear recurrences with constant coefficients, signature (-1, -1, 1, 1, 1, 1, 1, 1).
Programs
-
Mathematica
Union[# - 1, #, # + 1] &[Fibonacci[Range[50]]] CoefficientList[Series[-((x (1+x) (1+x+x^2+x^4) (1+x+2 x^2+x^3+x^4+x^5))/((1+x+x^2) (-1+x^3+x^6))),{x,0,60}],x] (* or *) LinearRecurrence[{-1,-1,1,1,1,1,1,1},{0,1,2,3,4,5,6,7,8,9,12,13},60] (* Harvey P. Dale, Nov 21 2024 *)
Formula
G.f.: -((x (1 + x) (1 + x + x^2 + x^4) (1 + x + 2 x^2 + x^3 + x^4 + x^5))/((1 + x + x^2) (-1 + x^3 + x^6))).
Comments